
A Game Theoretic Approach to Network Coding

Jason R. Marden and Michelle Effros

Abstract—We introduce a game theoretic framework for study-
ing a restricted form of network coding in a general wireless
network. The network is fixed and known, and the system
performance is measured as the number of wireless transmissions
required to meet n unicast demands. Game theory is here
employed as a tool for improving distributed network coding
solutions. We propose a framework that allows each unicast
session to independently adjust his routing decision in response
to local information. Specifically, we model the unicast sessions
as self-interested decision makers in a noncooperative game.
This approach involves designing both local cost functions and
decision rules for the unicast sessions so that the resulting
collective behavior achieves a desirable system performance in
a shared network environment. We compare the performance of
the resulting distributed algorithms to the best performance that
could be found and implemented using a centralized controller.
We focus on the performance of stable solutions – where stability
here refers to a form of Nash equilibrium defined below. Results
include bounds on the best- and worst-case stable solutions as
compared to the optimal centralized solution. We show that our
bounds on the best- and worst-case stable performance cannot
be improved using cost functions that are independent of the
network structure. Results in learning in games prove that the
best-case stable solution can be learned by self-interested players
with probability approaching 1.

I. INTRODUCTION

The network coding literature treats the design and perfor-
mance of network codes aimed at goals such as maximizing
capacity, minimizing power consumption, or improving the
robustness of communication in a network environment. While
early results primarily treat the multicast problem – where a
single source transmits the same information to all sinks in the
network – more recent work changes the focus to problems
where multiple independent communication sessions share the
network environment. A multiple unicast problem, character-
ized by a list of source-sink pairs with a distinct information
flow to be established from each source to its corresponding
sink, is one example of such a coding scenario. Multi-session
network coding problems like the multiple unicast problem
differ from the single-session network coding problems in that
they establish competition between independent information
flows for shared network resources.

A spectrum of approaches ranging from centralized control
systems to totally distributed design and operation is possible
for tackling multi-session coding problems. In centralized
approaches like [2], the codes at all nodes of the network

This paper is an extension of [1]. This work was supported by the Social
and Information Sciences Laboratory at California Institute of Technology,
DARPA ITMANET grant # W911NF–07–1–0029, and the Lee Center for
Advanced Networking at California Institute of Technology.

J. R. Marden is a junior fellow with the Social and Informational Sciences
Laboratory, California Institute of Technology, M/C 136–93, Pasadena, CA
91125, marden@caltech.edu.

M. Effros is a professor with the Department of Electrical Engineer-
ing, California Institute of Technology, M/C 136–93, Pasadena, CA 91125,
effros@caltech.edu.

are designed by a code designer with access to complete
information about the network and all sessions competing
for network resources. At the other extreme end of the
spectrum are distributed approaches like [3], which tackle
large optimization problems by treating nodes or possibly
sessions as independent decision makers in a shared network
environment. One advantage of distributed algorithms is the
savings in computation and coordination achieved by taking a
large central optimization problem and dividing it into smaller
problems. One disadvantage of this approach is that dividing
the central optimization problem in this fashion may induce
suboptimal solutions since each individual problem is typically
solved with incomplete information about the full problem,
and independently choosing the best solution for each sub-
problem may yield inferior performance for the problem as a
whole.

Recently, a branch of noncooperative game theory that
focuses on coordination games has been proposed as a tool for
cooperative control of distributed systems [4], [5]. Cooperative
control focuses on designing autonomous agents to optimize a
given global objective. Utilizing game theory for cooperative
control or distributed optimization requires the following:

(i) Game design: The system designer must specify the
set of decision makers, which we refer to as agents
or players, and their respective actions. Each agent is
assigned a local objective function that he selfishly seeks
to maximize. An agent’s objective function may depend
solely on his action, or more generally on the actions of
all agents. The compilation of the agents, actions, and
objective functions is referred to as a game.

(ii) Agent decision rules: The system designer must specify
an iterative procedure for how each agent selects his
respective action in response to local information.

The goal is to design both the game and the agent decision
rules such that the emergent global behavior is desirable with
respect to the global objective. In this paper, we primarily
focus on game design and appeal to the theory of learning in
game for the agent decision rules. The theory of learning in
games includes several agent decision rules, also referred to as
distributed learning algorithms, that provide guarantees on the
emergent global behavior. We direct the readers to [6]–[11]
for a comprehensive review.

In this paper, we explore the applicability of noncooperative
game theory for designing distributed algorithms for network
coding in a wireless network. We formulate the network
coding problem as a noncooperative game where the individ-
ual unicast sessions are designed as self-interested decision
makers. We design local objective functions for the unicast
sessions with the goal of minimizing total network power
consumption using a simple form of network coding. These
objective functions are designed without knowledge of the spe-

147978-1-4244-4536-3/09/$25.00 ©2009 IEEE

ITW 2009, Volos, Greece, June 10 - 12, 2009

Authorized licensed use limited to: Stanford University. Downloaded on August 28, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

cific network or the demands traversing the network but with
the aim of optimizing a centralized network objective when
utilizing available distributed learning algorithms. We evaluate
the desirability of the objective functions by examining the
system performance at the stable solutions, i.e, the equilibria.
We focus on the global performance of both the best- and
worst-case equilibria.1

Because of the inherent structure of the network coding
problem, there is an inefficiency that results from decomposing
the centralized optimization problem in this fashion. The
main result of this paper characterizes this inefficiency by
establishing tight worst-case bounds on the global performance
of the best- and worst-case equilibria for any objective function
design that is independent of the network structure. We iden-
tify the worst-case networks that give rise to this inefficiency
and derive a class of local objective functions that achieve
these performance bounds.

Several papers have used game theoretic methods for
analyzing network coding problems by viewing either the
individual unicasts or individual nodes in the network as
selfish decision makers [16]–[18]. Most of these results are
only applicable in restricted settings. For example, the au-
thors of [17] focus primarily on single-source multicast with
network coding. In that setting, the authors derive a cost
mechanism, i.e., a procedure for distributing the cost of a
particular edge to the players using that edge, such that a Nash
equilibrium exists and the flow allocation at a Nash equilib-
rium corresponds to the minimum cost. An alternative example
is [16], where the authors focus on a simple generalization of
the butterfly network with two users. The authors propose cost
functions for the two users and show that the desirable capacity
achieving solution emerges as a dominant strategy equilibrium
point of the game. The goal of this paper is to highlight the
applicability of game theory for attaining distributed solutions
to a more general class of network coding problems.

II. BACKGROUND: NONCOOPERATIVE GAMES

A. Definitions

We consider a finite strategic-form game. The n players are
represented by the set N := {1, ..., n}. Each player i ∈ N has
a finite action set Ai and a cost function Ji : A → R where
A = A1 × · · · × An denotes the joint action set. We refer to
a finite strategic-form game as “a game,” and we sometimes
use a single symbol, e.g., G, to represent the entire game, i.e.,
the player set, N , action sets, Ai, and cost functions Ji.

For an action profile a = (a1, a2, ..., an) ∈ A, let a−i

denote the profile of player actions other than player i, i.e.,
a−i = (a1, . . . , ai−1, ai+1, . . . , an). With this notation, we
sometimes write a profile a of actions as (ai, a−i). Similarly,
we may write Ji(a) as Ji(ai, a−i). We also use A−i =

1In some settings there are distributed learning algorithms that provide
convergence to the best-case equilibrium [12]–[14]; however, the provable
convergence rates for these algorithms are not desirable [15]. With this issue
in mind, we focus on the global performance of not only the optimal equilibria
but also the worst-case equilibria, since trivially it is easier to converge to any
equilibrium as opposed to a specific equilibrium. It is important to note that
these convergence rates are defined for a general class of games and not
specialized for the problem at hand.

∏
j �=i Aj to denote the set of possible collective actions of

all players other than player i.
The most well known form of an equilibrium is the Nash

equilibrium.

Definition 1 (Pure Nash Equilibrium). An action profile a∗ ∈
A is called a pure Nash equilibrium if for each player i ∈ N ,

Ji(a∗i , a
∗
−i) = min

ai∈Ai

Ji(ai, a
∗
−i). (1)

A (pure) Nash equilibrium represents a scenario for which
no player has an incentive to unilaterally deviate. In a dis-
tributed engineering system, a Nash equilibrium represents a
stable operating point [5].

B. Cooperative control

Cooperative control problems entail several autonomous
players seeking to collectively accomplish a global objective.
The network coding problem is one example of a cooperative
control problem, where the global objective is for all players
to efficiently use a common network by taking advantage of
possible coding opportunities. The central challenge in coop-
erative control problems is to derive local control mechanisms
for the individual players such that the players operate in a
manner that collectively aids the desired global objective.

In this paper, we focus on the problem of cooperative control
using the framework of game theory as proposed in [4]. Let
C : A → R represent the true global cost associated with a
particular joint action. Applying game theory for distributed
control requires designing local player cost functions Ji : A →
R that are aligned with the true global cost. As in [19], our
goals in designing the local cost functions are:

(i) A Nash equilibrium is guaranteed to exist in the game
(N, {Ai}, {Ji}).

(ii) The Nash equilibria of the game (N, {Ai}, {Ji}) are
efficient with respect to the global cost C.

We gauge the efficiency using the well known worst case
measures called the price of anarchy (PoA) and price of
stability (PoS) [20]. Let G denote a set of games. For any
particular game G ∈ G let E(G) denote the set of pure Nash
equilibria, PoA(G) denote the price of anarchy, and PoS(G)
denote the price of stability for the game G, where

PoA(G) := max
a∈ E(G)

C(a)
C(aopt)

(2)

PoS(G) := min
a∈ E(G)

C(a)
C(aopt)

, (3)

and aopt ∈ arg mina∗∈A C(a∗) is any optimal action profile
for the game G. We define the price of anarchy and the price
of stability for the set of games G as

PoA(G) := sup
G∈G

PoA(G), (4)

PoS(G) := sup
G∈G

PoS(G). (5)

148

Authorized licensed use limited to: Stanford University. Downloaded on August 28, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

v3v2v1 v3v2v1
x y x + y

Fig. 1. Illustration of Reverse Carpooling

III. A SIMPLE WIRELESS NETWORK CODING PROBLEM

We consider the distributed design of network codes for
multiple unicasts in a shared wireless network. We restrict
our attention to the simplest form of network codes, where
any node relaying one message in each direction between
a pair of neighboring nodes can reduce the power required
for transmission by broadcasting the bit-wise binary sum of
the received messages in a single transmission rather than
transmitting the two messages sequentially. Each neighbor can
then determine its intended message by adding the information
that it sent to the received sum, as illustrated in Figure 1. This
type of coding is sometimes called “reverse carpooling” since
it allows two flows to share a single transmission provided
that the two flows traverse the node in opposite directions.
The goal of our network code design for this wireless network
is to minimize the power required to simultaneously satisfy a
given collection of unicast flow demands. For simplicity, we
measure the cost of a network coding solution by evaluating
the number of transmissions per packet required under steady
state flow conditions. The following notation helps make these
ideas concrete.

We describe a network by a set V = {v1, ..., vm} of vertices,
or nodes, and for each vi ∈ V , the neighbors of node vi are
denoted as N (vi) ⊆ V ; each transmission by node vi is heard
by all the nodes in N (vi) and only those nodes.

Suppose the network needs to be shared by a finite set of
players N = {1, ..., n}. Each player i represents a single uni-
cast from sender si to receiver ti, where (si, ti) ∈ V 2. A path
ai from source si to terminal ti equals a set of nodes capable
of transmitting the information, i.e., ai = {v1, v2, . . . , v|ai|}
where |ai| denotes the number of nodes in ai, v1 = si,
v|ai| = ti, and vk+1 ∈ N (vk) for all k ∈ {1, 2, ..., |ai| − 1}.
We use Ai to denote all paths from si to ti available to player
i and A =

∏
i Ai to denote the paths available to all players.

For analysis, it is convenient to label each transmission from
v by the node from which the information was obtained and
the node for which it is next intended so that we can recognize
coding opportunities. To that end, let the detailed path of ai =
{v1, v2, . . . , v|ai|} be defined as

I(ai) :=
{
v1[∅, v2], v2[v1, v3], . . . , v|ai|−1[v|ai|−2, ti]

}
where vk[vk−1, vk+1] represents a transmission by node vk to
node vk+1 of information that was received from node vk−1.
The transmission v1[∅, v2] represents a transmission by node
v1 to node v2 of information that originated at node v1. Notice
that for any path ai there is a unique detailed path I(ai)
consisting of |ai| − 1 elements corresponding to the |ai| − 1
transmissions required to send a packet along that path.

A node that participates in more than one path may have
the opportunity to combine messages and save on transmission
costs if the paths traverse the node in opposite directions.
Suppose players i and j traverse node v in opposite directions,
i.e., v ∈ ai ∩ aj , where player i sends message zi using the

transmission v[v′i, v
′′
i] and player j sends message zj using the

transmission v[v′j , v
′′
j]. If v′i = v′′j and v′j = v′′i , then node v

can transmit zij = zi ⊕ zj and both v′′i and v′′j will be able to
decode their intended messages. This allows node v to serve
players i and j with one transmission instead of two. This is
true since node v′i knows zi and receives zi ⊕ zj , allowing it
to decode its intended message zj = zi ⊕ (zi ⊕ zj).

We assume that each vertex v ∈ V has a cost Cv : A →
R that measures the number of transmissions by that vertex
necessary for any routing profile. For our problem, this cost
takes on a simplified form that depends only on each player’s
transmission through the vertex v. Before defining the structure
of the cost function for the reverse carpooling setting, we first
introduce some notation. For a given routing profile a ∈ A,
let σ(a, v[vx, vy]) be defined as the number of players sending
information from vx to vy through v, i.e.,

σ(a, v[vx, vy]) := |{i ∈ N : v[vx, vy] ∈ I(ai)}|. (6)

Using only reverse carpooling codes, the transmission cost at
node v ∈ V for profile a ∈ A is defined as

Cv(a) :=
∑

(vx,vy)∈N (v)2:x>y

max {σ (a, v [vx, vy]} , σ (a, v [vy, vx])} , (7)

where v0 := ∅ and v0 ∈ N (v) for all v. Hence, the power
consumption at a vertex depends only on the number of players
using each transmission through the vertex. The system cost
for a routing profile a ∈ A is

C(a) :=
∑
v∈V

Cv(a) (8)

A global planner would like to use a profile a ∈ A that
minimizes the system cost.

IV. THE REVERSE CARPOOLING GAME

In this section we model the reverse carpooling problem as
a noncooperative game with player set N , action sets Ai, and
system cost C in (8). Modeling the reverse carpooling problem
as a noncooperative game involves assigning each player a cost
function that is appropriately aligned with the system cost. We
henceforth refer to the reverse carpooling problem modeled as
a noncooperative game as the reverse carpooling game.

A. Performance bounds for anonymous cost designs
Rather than focusing on the performance of a specific cost

design, in this section we seek to characterize the efficiency for
a general class of cost functions. Our first results proves that
any anonymous cost functions, that is any cost function that
is independent of the network structure, has at least a price
of anarchy of 2. This is a negative result since the system
cost associated with each player choosing his shortest path
and applying no network coding is also at most twice the cost
of the optimal solution.

Let σ̄(a, v[vx, vy]) := {i ∈ N : v[vx, vy] ∈ I(ai)} be the set
of players using the directed transmission v[vx, vy] in action
profile a. A player’s cost function is anonymous if it takes on
the form

Ji(ai, a−i) =
∑

v[vx,vy]∈I(ai)

fi (σ̄(a, v[vx, vy]), σ̄(a, v[vy, vx])) , (9)

149

Authorized licensed use limited to: Stanford University. Downloaded on August 28, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

Setup

s1t7

t1

t8

t2
t3t4

t5

t6 s2

s8

s7

s6

s5

s4

s3

Fig. 2. Problem setup: Price of anarchy of 2 for anonymous cost functions

where fi : 2N × 2N → R is the cost function of player i.
Note that the cost that any player i pays for using a directed
transmission is not dependent on the particular node; rather,
the cost is only a function of the players using the node in
each direction.

Theorem 1. Let G be the set of all reverse carpooling games
where each player has an anonymous cost function of the form
(9). The price of anarchy is at least 2.

Proof: Consider the example in Figure 2. There are
eight players with the highlighted sources and terminals. Each
player only has the option of taking an exterior path or an
interior path, each consisting of 2 segments consisting of m
internal nodes. The interior and exterior paths for player 1
are illustrated. If each player’s cost function is anonymous
and if all players take their exterior paths as shown on the
left side of Figure 3, then we have an equilibrium. At this
equilibrium, each player is alone on a path consisting of 2
segments. If a player unilaterally switched to his interior path
from this equilibrium, the player would also be alone on a path
consisting of 2 segments; hence it would result in the same
cost since cost functions are anonymous. If each player travels
on the exterior, the system cost is 16(m + 1) as there are no
carpooling opportunities for any player. If each player travels
through the interior as shown on the right side of Figure 3,
each player carpools on the m interior nodes but not the
boundary nodes of each edge segment. The system cost of
this scenario is 8(m + 2). Therefore, this example exhibits a

price of anarchy of
16(m+1)
8(m+2) which can be made arbitrarily

close to 2.
Theorem 1 proves that any cost design that is independent

of the network structure cannot guarantee a price of anarchy
strictly less than 2. It is an open research question to un-
derstand how to incorporate attainable information regarding
network structure into players’ cost functions to improve
the price of anarchy. Our second result characterizes a hard
constraint on the relationship between the price of anarchy and
price of stability for all cost functions.

Theorem 2. Let G be the set of all reverse carpooling games,
and let each cost function Ji be arbitrary but fixed. If the price
of anarchy is γ, then the price of stability ≥ γ+1

γ .

OptimalEquilibrium

Fig. 3. Equilibrium behavior: Price of anarchy of 2 for anonymous cost
functions

Proof: Consider the example in Figure 4. In this example,
player 1 has source and terminal (s1, t1) and can select either
the top path which consists of γm internal nodes or the bottom
path which consists of m−2 internal nodes, which we denote
as T and B respectively. Player 2 has source s2 = t1 and
terminal t2 = s1 and can also select either the top or bottom
path. The cost functions and system cost for the four joint
action profiles are highlighted in the following payoff matrices.

P1

P2
T B

T J1(T, T), J2(T, T) J1(T, B), J2(T, B)
B J1(B, T), J2(B, T) J1(B, B), J2(B, B)

Cost Function

P1

P2
T B

T γm + 2 γm + m
B γm + m m

System Cost C

Cost functions J1 and J2 achieve PoA = γ by assumption.
Consider the action profile a = (T, T). Since the price of
anarchy is γ, we know that (T, T) is not a Nash equilibrium.
If (T, T) were an equilibrium, then the price of anarchy for this
game would be (γm+2)/m > γ, which yields a contradiction.
Therefore, we know that either player 1 or 2 must prefer the
bottom route over the top route for this situation. Without
loss of generalities, suppose J1(B, T) < J1(T, T). Consider
the situation where player 2 only has the option of selecting
the top path, i.e., A2 = {T} as in Figure 4. Note that this
restriction does not change the cost functions for player 1.
For this game, the cost functions and system cost are now

P1

P2
T

T J1(T, T), J2(T, T)
B J1(B, T), J2(B, T)

Cost Matrix

P2
T

T γm + 2
B γm + m

System Cost C

This game has a unique Nash equilibrium, namely (B, T). The
optimal allocation for this game is (T, T). Therefore, the price
of stability for this game is (γm + m)/(γm + 2), which can
be made arbitrarily close to (γ + 1)/γ.

While there are many approaches to distributed optimiza-
tion, this section introduces two worst-case network examples
that provide efficiency limitations for any approach that sets
the paths of the unicast sessions as the decision variables. It

150

Authorized licensed use limited to: Stanford University. Downloaded on August 28, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

Nash Equilibrium Optimal

s1 t 1 s1 t 1

T

B

T

T

Fig. 4. Worst case example for relationship between the price of anarchy
and price of stability.

remains an open question as to whether alternative decomposi-
tions, such as designing the nodes in the network (as opposed
to the unicast sessions) as the decision makers, could give rise
to more efficient designs. However, such designs could require
each node to be aware of the entire network structure which
is impractical.

B. Cost design that achieves performance bounds
In [1], we identify a particular cost design that achieves the

optimal performance bounds set forth in Theorems 1 and 2.

Theorem 3. Let G be the set of all reverse carpooling games
where the cost function for player i is defined as

Ji(ai, a−i) = |I(ai)| + (α − 1)(C(a) − C(a0
i , a−i)) (10)

where α ≥ 1 is a given constant and a0
i is the null action for

player i and represents the situation where the player sends no
information through the network. This cost design guarantees
the existence of a Nash equilibrium irrespective of the network,
the price of anarchy is

PoA(G; α) =
{

2, α ∈ [1, 2],
α, α ∈ (2,∞),

and the price of stability is

PoS(G; α) =
α + 1

α
.

The cost functions in (10) are anonymous and can guarantee
a price of anarchy and price of stability pair (α, α+1

α) for any
α ∈ [2,∞). By Theorem 1, we know that one cannot guarantee
a price of anarchy strictly less than 2 for any anonymous
cost functions. By Theorem 2, we know that for any set of
cost functions that yield a price of anarchy of γ, the price of
stability must be at least γ+1

γ . Therefore, the cost functions in
(10) achieve the optimal bounds on the relationship between
the price of anarchy and price of stability.

When α = 2, the cost functions in (10) guarantee that the
global performance of any equilibrium is within a factor of
2 of the optimal and there exists at least one equilibrium
that is within a factor of 1.5 of optimal. These performance
guarantees are irrespective of the network structure or the
demands traversing the network. Furthermore, since these are
worst-case measures, most network structures will achieve
significantly better results than indicated by these measures.

C. Implications for more general network coding problems
The general results on optimality of cost functions in this

section also provide some impossibility results for more gen-
eral network coding problems. Consider any network coding
problem, unicast or multicast, with various coding options

such that reverse carpooling is a special case of the allowable
coding structures. Then, the worst case examples used to prove
Theorems 1 and 2 are still applicable in this new domain.
Therefore, for any network coding problem where reverse
carpooling is a special case, it is not possible to construct
anonymous player cost functions such that the price of anarchy
is strictly less than 2. Notice, however, that in these scenarios
the price of anarchy of 2 is not necessarily achievable by
shortest paths. Furthermore, it is not possible to guarantee
a better relationship between the price of anarchy and price
of stability than the relationship set forth in Theorem 2,
though this bound is not necessarily achievable for those
generalizations.

REFERENCES

[1] J. R. Marden and M. Effros, “The price of selfishness in network
coding,” in Workshop on Network Coding, Theory, and Applications,
June 2009, to appear.

[2] D. Traskov, N. Ratnakar, D. S. Lun, R. Koetter, and M. Medard,
“Network coding for multiple unicasts: An approach based on linear
optimization,” in Proceedings of the IEEE International Symposium on
Information Theory (ISIT), July 2006.

[3] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Médard, “The im-
portance of being opportunistic: practical network coding for wireless
enviornments,” in 43rd Allerton Annual Conference on Communications,
Control, and Computing. Monticello, IL: IEEE, Sept. 2005, invited
paper.

[4] J. R. Marden, G. Arslan, and J. S. Shamma, “Connections between
cooperative control and potential games,” IEEE Transactions on Systems,
Man and Cybernetics. Part B: Cybernetics, 2009, to appear.

[5] G. Arslan, J. R. Marden, and J. S. Shamma, “Autonomous vehicle-target
assignment: a game theoretical formulation,” ASME Journal of Dynamic
Systems, Measurement and Control, vol. 129, pp. 584–596, September
2007.

[6] D. Fudenberg and D. Levine, The Theory of Learning in Games.
Cambridge, MA: MIT Press, 1998.

[7] H. P. Young, Individual Strategy and Social Structure. Princeton, NJ:
Princeton University Press, 1998.

[8] ——, Strategic Learning and its Limits. Oxford University Press, 2005.
[9] J. Hofbauer and K. Sigmund, Evolutionary Games and Population

Dynamics. Cambridge, UK: Cambridge University Press, 1998.
[10] J. Weibull, Evolutionary Game Theory. Cambridge, MA: MIT Press,

1995.
[11] L. Samuelson, Evolutionary Games and Equilibrium Selection. Cam-

bridge, MA: MIT Press, 1997.
[12] L. Blume, “The statistical mechanics of strategic interaction,” Games

and Economic Behavior, vol. 5, pp. 387–424, 1993.
[13] ——, “Population games,” in The Economy as an evolving complex

system II, B. Arthur, S. Durlauf, and D. Lane, Eds. Reading, MA:
Addison-Wesley, 1997, pp. 425–460.

[14] J. R. Marden and J. S. Shamma, “Revisiting log-linear learning: Asyn-
chrony, completeness and a payoff-based implementation,,” Games and
Economic Behavior, 2008, submitted.

[15] M. Benaim and W. H. Sandholm, “Logit evolution in potential games:
Reversibility, rates of convergence, large deviations, and equilibrium
selection,” 2007, working paper.

[16] J. Price and T. Javidi, “Network coding games with unicast flows,” IEEE
Journal on Selected Areas in Communications, 2008, to appear.

[17] S. Bhadra, S. Shakkottai, and P. Gupta, “Min-cost selfish multicast with
network coding,” IEEE Transactions on Information Theory, vol. 52,
no. 11, pp. 5077–5087, 2006.

[18] D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, and H. Lee,
“Achieving minimum-cost multicast: A decentralized approach based on
network coding,” in Proceedings of IEEE INFOCOM, 2005, pp. 1607–
1617.

[19] J. R. Marden and A. Wierman, “Distributed welfare games,” Operations
Research special issue on Computational Economics, 2008, submitted
to.

[20] T. Roughgarden, Selfish Routing and the Price of Anarchy. Cambridge,
MA, USA: MIT Press, 2005.

151

Authorized licensed use limited to: Stanford University. Downloaded on August 28, 2009 at 21:15 from IEEE Xplore. Restrictions apply.

