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Abstract—This paper studies a solution concept for large
stochastic games. A standard solution concept for a stochastic
game isMarkov perfect equilibrium (MPE). In MPE, each player’s
optimal action depends on his own state and the state of the other
players. By contrast,oblivious equilibrium (OE) is an approxima-
tion introduced in [5] where each player makes decisions based
on his own state and the “average” state of the other players. For
this reason OE is computationally more tractable than MPE. It
was shown in [5] that as the number of players becomes large, OE
closely approximates MPE; however, this result was established
under a set of assumptions specific to industry dynamic models.
In this paper we develop a parsimonious set of assumptions under
which the result of [5] can be generalized to a broader class of
stochastic games with a large number of players.

I. I NTRODUCTION

Markov perfect equilibriumis a commonly used equilibrium
concept for stochastic games [1]. It has been widely used to
analyze interactions in dynamic systems with multiple players
with competing objectives. In MPE, strategies of players
depend only on the current state of all players, and not on
the past history of the game. In general, finding an MPE is
analytically intractable; MPE is typically obtained numerically
using dynamic programming (DP) algorithms [2]. As a result,
the complexity associated with MPE computation increases
rapidly with the number of players, the size of the state space,
and the size of the action sets [3]. This limits its application
to problems with small dimensions.

The economics literature has used MPE extensively in
the study of models of industry dynamics with heteroge-
neous firms, notably as proposed in the seminal work of
[4]. However, MPE computation for the proposed model is
nontrivial. Recently, a scheme for approximating MPE in such
models was proposed in [5], via a novel solution concept
called oblivious equilibrium. In oblivious equilibrium, a firm
optimizes given only the long-runaverageindustry statistics,
rather than the entire instantaneous vector of its competitors’
state. Clearly, OE computation is significantly simpler than
MPE computation, since each firm only needs to solve a one-
dimensional dynamic program. When there are a large number
of firms, individual firms have a small impact on the aggregate
industry statistics, provided that no firm is “large” relative to
the entire market (refered to as a “light-tail” condition by[5]).
It is reasonable to expect that under such a condition, if firms
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make decisions based only on the long-run industry average,
they should achieve near-optimal performance. Indeed, it is
established in [5] that under a reasonable set of technical
conditions (including the “light-tail” condition), OE is agood
approximation to MPE for industry dynamic models with
many firms; formally, this is called theasymptotic Markov
equilibrium (AME) property.

This paper presents a generalization of the approximation
result of [5]. As presented in [5], the main approximation result
is tailored to the class of firm competition models presented
there. However, in principle OE can be defined for any class
of stochastic games where the number of players grows large
in an appropriate sense. Our main contribution is to isolate
a parsimonious set of assumptions for a general class of
stochastic games with many players, under which the main
result of [5] continues to hold: namely, that OE is a good
approximation to MPE. Because our assumptions generalize
those in [5], the technical arguments are similar to those in
[5]; in some cases the arguments are in fact simplified due to
the more general game class considered.

The rest of the paper is organized as follows. In Section
II, we outline our model of a stochastic game, notation, and
definitions. In Section III, we introduce the AME property
and the formal light-tail condition. In Section IV, we prove
the main theorem of this paper using a series of lemmas. We
conclude in Section V.

II. M ODEL, DEFINITIONS AND NOTATIONS

We consider anm-player stochastic game evolving over
discrete time periods with an infinite horizon. The discrete
time periods are indexed with non-negative integerst ∈ N.
The state of the playeri at time t is denoted byxi,t ∈ X ,
whereX is a totally ordered (possibly infinite-dimensional)
discrete metric space.

Let Θ be the finite set of types, and corresponding to a type
θ ∈ Θ, let πθ be the non-negative type-dependent single period
payoff function. We assume that state evolution for a player
i with type θi depends only on its own current state and the
action it takes. This can be represented by a type dependent
conditional probability mass function (pmf)

xi,t+1 ∼ hθi (x|xi,t, ai,t) for some θi ∈ Θ, (1)

whereai,t is the action taken by the playeri at time t. We
denote the set of actions byA. The single period payoff to
player i with type θi is given asπθi (xi,t, ai,t,x−i,t). Here
x−i,t is the state of all players except playeri at timet. Note
that the payoff to playeri does not depend on the actions



taken by other players. Furthermore, we assume that the payoff
function is independent of the identity of other players. That
is, it only depends on the current statexi,t of the playeri, the
total numberm of the players at any time, and the fraction
f

(m)
−i,t(y), which is the fraction of the players excluding player

i, that have their state asy. In other words, we can write the
payoff function asπθi

(

xi,t, ai,t, f
(m)
−i,t,m

)

, where,θi is the

type of the playeri, andf
(m)
−i,t can be expressed as

f
(m)
−i,t(y) ,

1

m − 1

∑

j 6=i

1{xj,t=y}. (2)

Each playeri chooses an actionai,t = µm,θi(xi,t, f
(m)
−i,t)

to maximize his expected present value. Note that the policy
µm,θi depends on the typeθi of the player andm because
of the underlying dependence of the payoff function and the
state evolution onθi andm. Let µ

m be the vector of policies
of all players, andµm

−i be the vector of policies of all players
except playeri. We defineV θi(x, f,m|µm,θi ,µm

−i) to be the
expected net present value for playeri with current statex, if
the current aggregate state of players other thani is f , given
that i follows the policyµm,θi and the policy vector of players
other thani is given byµ

m
−i. In particular, we have

V θi(x, f,m|µm,θi ,µm
−i) ,

E

[
∞∑

τ=t

βτ−tπθi(xi,τ , ai,τ , f
(m)
−i,τ ,m)

∣
∣
∣
∣
∣

xi,t = x, f
(m)
−i,t = f ;µm,θi ,µm

−i

]

, (3)

where0 < β < 1 is the discount factor. Note that the random
variables(xi,t, f

(m)
i,t ) depend on the policy vectorµm and the

state evolution functionh.
We focus onsymmetric Markov perfect equilibrium, where

all firms with the same typeθ use the same policyµm,θ. Let
Mθ be the set of all policies available to a player of typeθ.
Note that this set also depends on total number of playersm.

Definition 1 (Markov Perfect Equilibrium):The vector of
policies µ

m is a Markov perfect equilibriumif for all j, we
have

sup
µ′∈Mθj

V θj
(
x, f,m|µ′,µm

−j

)
=

V θj
(
x, f,m|µm,θj ,µm

−j

)
∀x, f.

The analysis of [5] approximates the MPE using a form of
the law of large numbers: as the number of players becomes
large, the changes in the players’ states average out such that
the state vector is well approximated by its long run average. In
this case, each player can find his optimal policy based solely
on his own state and the long-run average aggregate state of
the other players. We therefore restrict attention to policies
that are only a function of the player’s own state, and an
underlying constant aggregate distribution of the competitors.
Such strategies are referred to asoblivious strategiessince they

do not take into account the complete state of the competitors
at any time. Let us denotẽµm,θi as an oblivious policy
of player i with type θi; we let M̃θ denote the set of all
oblivious policies available to a player of typeθ. This set also
depends on the number of playersm. Note that if all players
use oblivious strategies, their states evolve as independent
Markov chains. We make the following assumption regarding
the Markov chain of each player playing an oblivious policy.

Assumption 1:The Markov chain associated with the state
evolution of each playeri (with type θi) playing an oblivious
policy µ̃m,θi is positive recurrent, and reaches a stationary
distributionqµ̃m,θi .

Let µ̃
m be the vector of oblivious policies for all players,

µ̃m,θi be the oblivious policy for playeri, and µ̃
m
−i be the

vector of oblivious policies of all player except playeri. For
simplification of analysis, we assume that the initial state
of a player i is sampled from the stationary distribution
qµ̃m,θi of its state Markov chain; without this assumption, the
OE approximation holds only after sufficient mixing of the
individual players’ state evolution Markov chains. Givenµ̃

m,
for a particular playeri, the long-run average aggregate state
of its competitors is denote bỹf (m)

−i , and is defined as

f̃
(m)
−i (y) , E

(

f
(m)
−i,t(y)

)

=
1

m − 1

∑

j 6=i

qµ̃
m,θj

(y). (4)

Note that,f̃ (m)
−i is completely determined by the state evolution

function functionh and oblivious policyµ̃m
−i.

As with the case of symmetric MPE defined above, we
assume that players with the same type use the same oblivious
policy. Let µ̃m,θ denote the oblivious policy employed by all
players of typeθ; note that thenf̃ (m)

−i is identical for all
such playersi, so we abbreviate this as̃f (m),θ. We define
the oblivious value functioñV θi(x,m|µ̃m,θi , µ̃m

−i) to be the
expected net present value for playeri with typeθi and current
statex, if player i follows the oblivious policyµ̃m,θi , and
players other thani follow the oblivious policy vectorµ̃m

−i.
Specifically, we have

Ṽ θi(x,m|µ̃m,θi , µ̃m
−i) ,

E

[
∞∑

τ=t

βτ−tπθi

(

xi,τ , ai,τ , f̃
(m)
−i ,m

)
∣
∣
∣
∣
∣

xi,t = x; µ̃m,θi

]

.

(5)

Note that the expectation does not depend explicitly on the
policies used by players other thani; this dependence only
enters through the long-run average aggregate statef̃

(m)
−i .

In particular, the state evolution isonly due to the policy
of player i. Using the oblivious value function, we define
oblivious equilibrium as follows.

Definition 2 (Oblivious Equilibrium):The vector of poli-
cies µ̃

m represents anoblivious equilibriumif for all j, we
have

sup
µ′∈M̃θj

Ṽ θj
(
x,m| µ′, µ̃m

−j

)
= Ṽ θj

(
x,m| µ̃m,θj , µ̃m

−j

)
, ∀x.



Compared to [5], our model has a more general action-
dependent payoff function. In [5], action is in form of choice
of investment and appears as an additive form in the payoff
function for all players. We also allow the possibility of
heterogeneity in state evolution and payoff functions. Finally,
in [5], many assumptions on the payoff functions are required
primarily to establish the stationarity of the underlying Markov
chain. We abstract this by assuming existence of stationary
distribution; verification of this assumption must be done on
an application-by-application basis.

In this paper, we do not show the existence of Markov
perfect equilibrium or of oblivious equilibrium. We assume
that both the equilibrium points exist for the stochastic game
under consideration1.

Assumption 2:Markov perfect equilibrium and oblivious
equilibrium exist for the stochastic game under consideration.

III. A SYMPTOTIC MARKOV EQUILIBRIUM AND THE

L IGHT-TAIL CONDITION

The main result of [5] is that under mild conditions, MPE
can be approximated by OE in models of industry dynamics
with a large number of firms. In this section, we generalize
the key assumptions used in that paper, so that we can develop
a similar result for general stochastic games.

We begin by describing the asymptotic Markov equilibrium
(AME) property; intuitively, this property says that an obliv-
ious policy is approximately optimal even when compared
against Markov policies. Formally, the AME ensures that as
number of players in the game becomes large, the approxima-
tion error between the expected net present value obtained by
deviating from the oblivious policỹµm,θ and instead following
the optimal (non-oblivious) policy goes to zero for each state
x of the player.

Definition 3 (Asymptotic Markov Equilibrium (AME)):A
sequence of oblivious policies̃µm possesses the asymptotic
Markov equilibrium (AME) property if for allx and i, we
have

lim
m→∞

E

[

sup
µ′∈Mθi

V θi
(
x, f,m | µ′, µ̃m

−i

)
−

V θi
(
x, f,m | µ̃m,θi , µ̃m

−i

)

]

= 0.

Notice that the expectation here is over the aggregate stateof
players other thani, denoted byf . MPE requires the error to
be zero for all(x, f), rather than in expectation; of course,
in general, it will not be possible to find a single oblivious
policy that satisfies the AME property for anyf . In particular,
in OE, actions taken by a player will perform poorly if the
other players’ state is far from the long-run average aggregate
state. Thus, AME implies that the OE policy performs nearly
as well as the non-oblivious best policy for those aggregate
states of other players that occur with high probability.

1In general MPE is not unique. As stated in [5], there are likely to be fewer
OE than MPE, though no general result is known.

In order to establish AME, we make the following assump-
tions on the payoff functionsπθ. For notational convenience,
we drop the subscriptsi, t whenever it does not lead to any
ambiguity. Also we abbreviateπθ(x, a, f (m),m) to be the
payoff function for all playersj with type θj = θ.

Assumption 3:We assume that the payoff function is uni-
formly bounded. That is

sup
x,a,f(m),m

πθ(x, a, f (m),m) < ∞ ∀θ.

Assumption 4:We assume that the payoffπθ is Gateaux
differentiable with respect tof (m)(y). That is for allθ, if

∑

y

∆f (m)(y)

∣
∣
∣
∣

∂πθ(x, a, f (m),m)

∂f (m)(y)

∣
∣
∣
∣
< ∞,

then

∂πθ
(
x, a, f (m) + γ∆f (m),m

)

∂γ

∣
∣
∣
∣
∣
γ=0

=

∑

y

∆f (m)(y)
∂πθ

(
x, a, f (m),m

)

∂f (m)(y)
.

We now proceed to define thelight-tail condition formally.
We definegθ(y) as

gθ(y) , sup
x,a,f(m),m

∣
∣
∣
∣

∂πθ(x, a, f (m),m)

∂f (m)(y)

∣
∣
∣
∣

(6)

and make following assumption ongθ(y).
Assumption 5 (Light-Tail):We assume thatgθ(y) is finite

for all θ and y. Also, given ǫ > 0, ∀ θ, there exists a state
valuezθ, such that

E

[

gθ(Ũ (m))1Ũ(m)>zθ |Ũ
(m) ∼ f̃ (m),θ

]

≤ ǫ, ∀m. (7)

Here Ũ (m) is a random variable distributed according to
f̃ (m),θ. The functiongθ(y) can be interpreted as the maximum
rate of change of the single period payoff of any player, with
respect to a small change in the fraction of competitors at
any state valuey. The first part of the assumption implies
that this is finite. The second part of the assumption requires
that the probability of competitors at largery (tail probability)
should go to zero quickly uniformly overm. The quantity
E

[

gθ(Ũ (m))1Ũ(m)>zθ |Ũ (m) ∼ f̃ (m),θ
]

captures the effect of
competitors at a higher state on the single period payoff of a
player.

To summarize, our development to this point has led to five
assumptions on our model:

1) Positive recurrence of the state evolution under oblivious
policies (Assumption 1);

2) Existence of MPE and OE (Assumption 2);
3) Uniform boundedness of the payoff function of each

player (Assumption 3);
4) Gateaux differentiability of the payoff function of each

player (Assumption 4); and
5) The light-tail condition on the payoff function of each

player (Assumption 5).



IV. A SYMPTOTIC RESULTS FOROBLIVIOUS EQUILIBRIUM

In this section, we prove the AME property using a series of
lemmas; our technical development is similar to that in [5],but
is streamlined by the use of a parsimonious set of assumptions.
Assumptions 1-5 are kept throughout the remainder of the
paper.

Lemma 1:For all x andθ, we have

sup
m,µm,θ∈Mθ

E

[ ∞∑

τ=t

βτ−t sup
f

πθ (xi,τ , ai,τ , f,m)

|xi,t = x
]

< ∞.

Proof: Follows trivially from assumptions 3.
The next lemma shows that whenever two aggregate states

f andf
′

arecloseto each other, the single period payoffs of
any player under these two aggregate states are also close to
each other. For an appropriate metric for the distance between
two distributions, we define the1 − g norm as follows:

‖f‖1,gθ ,
∑

y

|f(y)|gθ(y).

The 1 − g norm puts higher weights on those states of
competitors where a slight change in the fractional distribution
of competitors causes a large change in the payoff function.
Hence, it measures the distance between two distributions in
terms of their effect on the payoff function.

Lemma 2:For all θ and for allf, f ′ such that‖f (m)‖1,gθ <

∞ and‖f ′(m)‖1,gθ < ∞, the following holds

∣
∣
∣πθ(x, a, f (m),m) − πθ(x, a, f

′(m),m)
∣
∣
∣

≤
∥
∥
∥f (m) − f

′(m)
∥
∥
∥

1,gθ
.

Proof: By the assumptions on the payoff function, for any
x, a, f, f

′

andm, we have,
∣
∣
∣πθ(x, a, f (m),m) − πθ(x, a, f

′(m),m)
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∫ 1

α=0

∂πθ
(

x, a, f (m) + α(f (m) − f
′(m)),m

)

∂α
dα

∣
∣
∣
∣
∣
∣

,

=

∣
∣
∣
∣
∣

∫ 1

0

∑

y

(

f (m)(y) − f
′(m)(y)

)

·




∂πθ

(

x, a, f (m) + α(f (m) − f
′(m)),m

)

∂
(
f (m) + α(f (m) − f

′(m))
)
(y)



 dα

∣
∣
∣
∣
∣
∣

,

≤

∫ 1

0

∑

y

∣
∣
∣f (m)(y) − f

′(m)(y)
∣
∣
∣ gθ(y)dα,

=
∥
∥
∥f (m) − f

′(m)
∥
∥
∥

1,gθ
.

The next lemma shows that, asm → ∞, the distribution of
the aggregate statef (m) approaches its meañf (m) in the1, gθ

norm define above. Here, bothf (m) andf̃ (m) are defined over
same oblivious policy vector,̃µm.

Lemma 3:For all i with θi = θ,
∥
∥
∥f

(m)
−i,t − f̃ (m),θ

∥
∥
∥

1,gθ
→ 0

in probability asm → ∞.
Proof: We can write

∥
∥
∥f

(m)
−i,t − f̃ (m),θ

∥
∥
∥

1,gθ
=
∑

y

gθ(y)
∣
∣
∣f

(m)
−i,t(y) − f̃ (m),θ(y)

∣
∣
∣ .

Now, let ǫ > 0 be given and letzθ be such that the light-tail
condition in (7) is satisfied for the givenǫ. Then,
∥
∥
∥f

(m)
−i,t − f̃ (m),θ

∥
∥
∥

1,gθ
≤ zθ max

y≤zθ
gθ(y)

∣
∣
∣f

(m)
−i,t(y) − f̃ (m),θ(y)

∣
∣
∣

︸ ︷︷ ︸

≡ A
(m)
z

+
∑

y>zθ

gθ(y)f
(m)
−i,t(y)

︸ ︷︷ ︸

≡ B
(m)
z

+
∑

y>zθ

gθ(y)f̃ (m),θ(y)

︸ ︷︷ ︸

≡ C
(m)
z

.

By the light-tail assumption, for anyǫ > 0 and sufficiently
large zθ, we haveC

(m)
z ≤ ǫ. Hence,P

[

C
(m)
z > ǫ

]

→ 0 as
m → ∞.

Also, E

[

B
(m)
z

]

= C
(m)
z and hence by Markov inequality

we have, for anyδ > 0 and ǫ > 0, and sufficiently largezθ,
P
[

B
(m)
z > δ

]

< ǫ
δ
. Hence,lim supm→∞ P

[

B
(m)
z > δ

]

= 0.
Now,

E

(

f
(m)
−i,t(y) − f̃

(m)
−i (y)

)2

=
1

(m − 1)2
E




∑

j 6=i

1{xj,t=y} − E




∑

j 6=i

1{xj,t=y}









2

,

=
1

(m − 1)2

∑

j 6=i

Var
(
1{xj,t=y}

)
,

≤
1

4(m − 1)
→ 0 as m→ ∞.

since the random variable1{xj,t=y} is a Bernoulli random
variable with E

[
1{xj,t=y}

]
= qθj (y) and Var

(
1{xj,t=y}

)
=

qθj (y)(1 − qθj (y)) ≤ 1
4 . Hence,A(m)

z → 0 in probability as
m → ∞.

The next lemma relates the present expected payoff when
a player uses a policyµm,θ.

Lemma 4:For all x, µm,θi andθi,

lim
m→∞

E

[
∞∑

τ=t

βτ−t
∣
∣
∣πθi

(

xi,τ , ai,τ , f
(m)
−i,τ ,m

)

−

πθi

(

xi,τ , ai,τ , f̃
(m)
−i ,m

) ∣
∣
∣ | xi,t = x;µm,θi , µ̃m

−i

]

= 0.

Proof: Let us define

∆m,θ
i,t ,

∣
∣
∣πθi

(

xi,t, ai,t, f
(m)
−i,t,m

)

−πθi

(

xi,t, ai,t, f̃
(m)
−i ,m

) ∣
∣
∣.



For any δ > 0, let us defineZm,θ to be the event that∥
∥
∥f

(m)
−i,τ (y) − f̃

(m)
−i

∥
∥
∥

1,gθ
≥ δ. Then, we can write

E

[
∞∑

τ=t

βτ−t∆m,θ
i,t

]

≤

[
∞∑

τ=t

βτ−t
E

(

∆m,θ
i,t

)
]

,

=

∞∑

τ=t

βτ−t
E

(

∆m,θ
i,t 1¬Zm,θ

)

+

∞∑

τ=t

βτ−t
E

(

∆m,θ
i,t 1Zm,θ

)

,

≤
δ

1 − β
+

∞∑

τ=t

βτ−t
E

(

∆m,θ
i,t 1Zm,θ

)

,

where the last inequality follows from Lemma 2. Now,
∆m,θ

i,t ≤ 2 supf πθ(x, a, f (m),m). This implies that the second
term in the above equation can be written as
∞∑

τ=t

βτ−t
E

(

∆m,θ
i,t 1Zm,θ

)

≤ 2

∞∑

τ=t

βτ−t
E

(

sup
f

πθ(xi,τ , ai,τ , f,m)1Zm,θ

)

,

≤ 2 sup
µm,θ∈Mθ

E

(
∞∑

τ=t

βτ−t sup
f

πθ(xi,τ , ai,τ , f,m)1Zm,θ

)

,

= 2P
(
Zm,θ

)
sup

µm,θ∈M̃θ

E

[
∞∑

τ=t

βτ−t sup
f

πθ(xi,τ , ai,τ , f,m)

]

,

where the last equality follows becausesupµm,θ is attained

by an oblivious policy andxi,τ and f
(m)
−i,τ are independent.

By Lemma 3,P
(
Zm,θ

)
→ 0 as m → ∞. This along with

Lemma 1 gives the desired result.
Theorem 5 (Main Theorem):A sequence of oblivious equi-

librium policies µ̃
m satisfies the AME property. That is, for

all i, x, we have

lim
m→∞

E

[

sup
µ′∈Mθi

V θi
(
x, f,m | µ′, µ̃m

−i

)
−

V θi
(
x, f,m | µ̃m,θi , µ̃m

−i

) ]

= 0.

Proof: Let µ̂m,θi be the (non-oblivious) optimal best
response tõµm

−i. That is forµ′ ∈ Mθi ,

sup
µ′

V θi
(
x, f,m | µ′, µ̃m

−i

)
= V θi

(
x, f,m | µ̂m,θi , µ̃m

−i

)
.

Let us also define

∆V θi , V θi
(
x, f,m | µ̂m,θi , µ̃m

−i

)
−

V θi
(
x, f,m | µ̃m,θi , µ̃m

−i

)
.

Then we need to show that for allx, θi, limm→∞ E
[
∆V θi

]
=

0. We can write∆V θi as

∆V θi = V θi
(
x, f,m|µ̂m,θi , µ̃m

−i

)
− Ṽ θi

(
x,m|µ̃m,θi , µ̃m

−i

)

+Ṽ θi
(
x,m | µ̃m,θi , µ̃m

−i

)
− V θi

(
x, f,m | µ̃m,θi , µ̃m

−i

)
,

≤V θi
(
x, f,m|µ̂m,θi , µ̃m

−i

)
− Ṽ θi

(
x,m|µ̂m,θi , µ̃m

−i

)

+Ṽ θi
(
x,m | µ̃m,θi , µ̃m

−i

)
− V θi

(
x, f,m | µ̃m,θi , µ̃m

−i

)
,

≡ T1 + T2.

The inequality follows sincẽµm,θi maximizes the oblivious
value function. To prove the AME property, we need to show
that E [T1] and E [T2] converge to zero asm becomes large.
Using triangle inequality, we can write

E[T1] ≤ E

[ ∞∑

τ=t

βτ−t
∣
∣
∣πθi

(

xi,τ , ai,τ , f
(m)
−i,τ ,m

)

−

πθi

(

xi,τ , ai,τ , f̃
(m)
−i ,m

)∣
∣
∣ | xi,t = x; µ̂m,θi , µ̃m

−i

]

,

E[T2] ≤ E

[ ∞∑

τ=t

βτ−t
∣
∣
∣πθi

(

xi,τ , ai,τ , f̃m
−i,m

)

−

πθi

(

xi,τ , ai,τ , f
(m)
−i,τ ,m

) ∣
∣
∣ | xi,t = x; µ̃m,θi , µ̃m

−i

]

.

Here, expectation is also over the aggregate initial statef of
competitors. Lemma 4 then implies the result.
Thus, for any typeθ ∈ Θ, the AME property holds. Since
|Θ| < ∞, for a givenx asm → ∞, the AME property holds
uniformly for all θ and hence for all players.

V. CONCLUSION

As an extension to the work done in [5], we have shown
that the OE solution concept can be applied to a general class
of stochastic games. Under certain mild technical conditions,
the AME property holds and OE can be used for MPE
computation. This allows analysis of problems with high
dimension (large number of players) where MPE computation
is intractable.

For the special case of a discrete-time infinite-horizon
stochastic game with finite state space, the light tail condition
automatically follows, and hence only Assumptions 1-3 are
sufficient to imply AME.
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