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Abstract—This paper studies a solution concept for large make decisions based only on the long-run industry average,
stochastic games. A standard solution concept for a StOChaStiCthey should achieve near-optimal performance. Indeeds it i
game isMarkov perfect equilibrium (MPE). In MPE, each player's  gogiaplished in [5] that under a reasonable set of technical

optimal action depends on his own state and the state of the other . . . - - .. .
players. By contrast,oblivious equilibrium (OE) is an approxima- conditions (including the “light-tail” condition), OE is good

tion introduced in [5] where each player makes decisions based @pproximation to MPE for industry dynamic models with
on his own state and the “average” state of the other players. ko many firms; formally, this is called thasymptotic Markov
this reason OE is computationally more tractable than MPE. It equilibrium (AME) property.

was shown in [S] that as the number of players becomes large, OE  Thig naner presents a generalization of the approximation
closely approximates MPE; however, this result was established It of 151, A tedin I51. th . imatiosuie
under a set of assumptions specific to industry dynamic models. .resu. of [5]. As presente m [5], the ma.|r.1 approximatio

In this paper we develop a parsimonious set of assumptions under iS tailored to the class of firm competition models presented
which the result of [5] can be generalized to a broader class of there. However, in principle OE can be defined for any class
stochastic games with a large number of players. of stochastic games where the number of players grows large
in an appropriate sense. Our main contribution is to isolate
—_— ... . a parsimonious set of assumptions for a general class of
Markov perfect equilibriunis a commonly used equilibrium ¢y hastic games with many players, under which the main

concept for stochastic games [1]. It has been widely used {Q, 1+ of [5] continues to hold: namely, that OE is a good
analyze interactions in dynamic systems with multiple pfay 556ximation to MPE. Because our assumptions generalize

with competing objectives. In MPE, strategies of playergsge in [5], the technical arguments are similar to those in
depend only on the current state of all players, and not @8. iy some cases the arguments are in fact simplified due to
the past history of the game. In general, finding an MPE jga more general game class considered.

analytically intractable; MPE is typically obtained nuricaily The rest of the paper is organized as follows. In Section
using dynamic programming (DP) algorithms [2]. As aresully \ye outiine our model of a stochastic game, notation, and
the complexity associated with MPE computation increasggsinitions. In Section 11, we introduce the AME property
rapidly with the number of players, the size of the state 8pag,y he formal light-tail condition. In Section 1V, we prove

and the size of the action sets [3]. This limits its applioati y,o nain theorem of this paper using a series of lemmas. We
to problems with small dimensions. conclude in Section V.

The economics literature has used MPE extensively in
the study of models of industry dynamics with heteroge- [I. MODEL, DEFINITIONS AND NOTATIONS

neous firms, notably as proposed in the seminal work of\we consider anm-player stochastic game evolving over
[4]. However, MPE computation for the proposed model igiscrete time periods with an infinite horizon. The discrete
nontrivial. Recently, a scheme for approximating MPE intsugime periods are indexed with non-negative integers N.
models was proposed in [5], via a novel solution concefhe state of the player at time ¢ is denoted byz;, € X,
called oblivious equilibrium In oblivious equilibrium, a firm \yhere & is a totally ordered (possibly infinite-dimensional)
optimizes given only the long-ruaverageindustry statistics, discrete metric space.

rather than the entire instantaneous vector of its congpstit | et © be the finite set of types, and corresponding to a type
state. Clearly, OE computation is significantly simplerrthay ¢ @, let ¢ be the non-negative type-dependent single period
MPE computation, since each firm only needs to solve a ongyoff function. We assume that state evolution for a player
dimensional dynamic program. When there are a large numbegiith type ¢; depends only on its own current state and the
of firms, individual firms have a small impact on the aggregatgtion it takes. This can be represented by a type dependent
industry statistics, provided that no firm is “large” rel@ito conditional probability mass function (pmf)

the entire market (refered to as a “light-tail” condition [5). o

It is reasonable to expect that under such a condition, ifsfirm Tipy1 ~ W (2]zig, aie)  for some 0, €0, (1)
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taken by other players. Furthermore, we assume that thdfpayto not take into account the complete state of the compstitor
function is independent of the identity of other playersaffhat any time. Let us denot@™?% as an oblivious policy
is, it only depends on the current statg, of the playeri, the of player i with type 6;; we let M? denote the set of all
total numberm of the players at any time, and the fractioroblivious policies available to a player of tyge This set also
fi’;fi(y), which is the fraction of the players excluding playefdepends on the number of players Note that if all players
i, that have their state as In other words, we can write theuse oblivious strategies, their states evolve as indepgnde
payoff function asr® (x4, a;, fy?l,m , where, 6, is the Markov chains. We make the following assumption regarding
’ the Markov chain of each player playing an oblivious policy.
Assumption 1:The Markov chain associated with the state

m)

type of the player, and ffiyt can be expressed as

(m) A 1 evolution of each player (with type 6;) playing an oblivious
f,i,t(y) T m_1 Zl{wj,t:y}- @) policy ™% is 6positive recurrent, and reaches a stationary
7 distribution ¢#"""* .

. . .0 m Let 2™ be the vector of oblivious policies for all players,
Each p_layer; chooses an action; ; = 4 ’el(LL‘i,t;fEi,b =m0 ’l;e the oblivious policy for Iapet' and ™ b'; t?’]e
to maximize his expected present value. Note that the polity - > Policy Tor playet, K-i D
™% depends on the typé; of the player andn because VeCtor of oblivious policies of all player except playerFor

of the underlying dependence of the payoff function and gramplification qf analysis, we assume that the i.nitigl state
state evolution o; andm. Let u™ be the vector of policies of a playeri is sampled from the stationary distribution

~m, 0, . P . .

of all players, angz™; be the vector of policies of all players?_  Of its state Markov chain; without this assumption, the
except player. We defineV? (z, f, m|u™%, u™,) to be the OE approximation holds only after sufficient mixing of the
expected net present value for playewith curre;'lt stater, if individual_players’ sta-te evolution Markov chains. Givaft',

the current aggregate state of players other thinf, given for a particular playet, the long-run average aggregate state

. . . =(m) . .
thati follows the policy,% and the policy vector of players ©f its competitors is denote by";", and is defined as
other thani is given byu™,. In particular, we have Sm), |\ A (m) 1 PR

[ (y) =E (f—i,t(y)) T —1 Zq (). @)

L

Vf),; (.Z’, f’ m‘um,«% , I'I’T—nz) A VED)
B 0 —t Gig ‘ (m Note.that,fi’?). is completely _determir_1ed~by the state evolution
Zﬁ T (i ey Gies [ 25 2y 0) function functionk and oblivious policyia™;.
T=t

As with the case of symmetric MPE defined above, we
assume that players with the same type use the same oblivious
policy. Let z™? denote the oblivious policy employed by all

_ _ players of typed; note that thenf(_'?) is identical for all
where0 < ( < 1 is the discount factor. Note that the rando

"uch playersi, so we abbreviate this ag™-?. We define
variables(x; , fi(’T)) depend on the policy vectqs™ and the P aYers, £ ~

oL the oblivious value functior/? (z, m|i™%, i™) to be the

state erO ution functio - K ; iibriurah expected net present value for playevith type8; and current

We ocus onsymmetric Markov perfect equi ! rlungv €€ statez, if player i follows the oblivious policyji™ %, and
all firms with the same typé use the same policy™°. Let

0 Y X players other than follow the oblivious policy vectorix™,;.
M be the set of all policies available to a player of type Specifically, we have
Note that this set also depends on total number of players

Definition 1 (Markov Perfect Equilibrium)The vector of /% (z,m|p™%, @™) &

—1

(3

_ (m) _ ¢, m0; ,m
xi,t—CU,f,i’t—f,/J by L]

policies u™ is a Markov perfect equilibriumif for all j, we 0o
have E [Z ﬁT_tTrei ('Ti,Ta ai,'rv fg’vﬂ)7 m) wi,t = ; ﬁm’ei‘| .
T=t
Sup Vej (I7f7m|,u/7/1'Tj) = (5)

reMP . -
Wem Note that the expectation does not depend explicitly on the

05 m,0; ,m . -
V% (w, fymlp™®, p) Y, f. policies used by players other thanthis dependence only

The analysis of [5] approximates the MPE using a form ¢nters through the long-run average aggregate std .
the law of large numbers: as the number of players becomBsparticular, the state evolution ienly due to the policy
large, the changes in the players’ states average out sath ff Playeri. Using the oblivious value function, we define
the state vector is well approximated by its long run averge ©Plivious equilibrium as follows. _
this case, each player can find his optimal policy basedysole| Definition 2 (Oblivious Equilibrium):The vector of poli-
on his own state and the long-run average aggregate stat€igp /2" represents awblivious equilibriumif for all j, we
the other players. We therefore restrict attention to jesic have
that are only a function of the player's own state, and an
underlying constant aggregate distribution of the conbqesti sup V% (

. .. . ac,m| ,u/aﬂ‘Tj) = ‘70_7' (I7m| ﬂm,e'jaﬁm') ) V.
Such strategies are referred toodivious strategiesince they /¢ 1%

—J



Compared to [5], our model has a more general action-In order to establish AME, we make the following assump-
dependent payoff function. In [5], action is in form of cheic tions on the payoff functions?. For notational convenience,
of investment and appears as an additive form in the pay®fe drop the subscripts ¢t whenever it does not lead to any
function for all players. We also allow the possibility ofambiguity. Also we abbreviater’ (z, a, f™),m) to be the
heterogeneity in state evolution and payoff functionsalyn payoff function for all playerg with type 6, = 6.
in [5], many assumptions on the payoff functions are reguire Assumption 3:We assume that the payoff function is uni-
primarily to establish the stationarity of the underlyingiov formly bounded. That is
chain. We abstract this by assuming existence of stationary
distribution; verification of this assumption must be dome o
an application-by-application basis.

In this paper, we do not show the existence of Marko
perfect equilibrium or of oblivious equilibrium. We assum
that both the equilibrium points exist for the stochastimga on(x,a, ™ m)
under consideratiof Z Af™(y) ‘

: afm (y)

Assumption 2:Markov perfect equilibrium and oblivious Y
equilibrium exist for the stochastic game under considamat then

0 m m
[1l. ASYMPTOTIC MARKOV EQUILIBRIUM AND THE on® (z,a, f™) +yAF™ m)
LIGHT-TAIL CONDITION v

sup Wa(m,a,f(m),m) < oo V6.
z,a,f(Mm) m
Assumption 4:We assume that the payoff’ is Gateaux
ifferentiable with respect tg(™ (y). That is for all@, if

‘<oo,

v=0
The main result of [5] is that under mild conditions, MPE (m) o’ (:c,a7f(m),m)
can be approximated by OE in models of industry dynamics ZAf (¥) afm) (y)
with a large number of firms. In this section, we generalize Y
the key assumptions used in that paper, so that we can develo/e now proceed to define thight-tail condition formally.

a similar result for general stochastic games. We defineg’(y) as
We begin by describing the asymptotic Markov equilibrium o (z,a, f™, m)
. . . . 0 A s Wy 9
(AME) property; intuitively, this property says that an bl 9°(y) = Sl(lp a7t (y) ’ (6)
z,a,f(m),m

ious policy is approximately optimal even when compared
against Markov policies. Formally, the AME ensures that amd make following assumption aff (y).
number of players in the game becomes large, the approximaAssumption 5 (Light-Tail)We assume thag’(y) is finite
tion error between the expected net present value obtaiyedfor all # andy. Also, givene > 0, V 0, there exists a state
deviating from the oblivious policyi™? and instead following value 2%, such that
the optimal (non-oblivious) policy goes to zero for eacttesta 07 (m ~m)  Fm).0

Definition 3 (Asymptotic Markov Equilibrium (AME)R e (7(m) is a random variable distributed according to
sequence of oblivious policied” possesses the asymptotlcjam),e. The functiong? (y) can be interpreted as the maximum

Markov equilibrium (AME) property if for allz andi, we a4e of change of the single period payoff of any player, with

have respect to a small change in the fraction of competitors at
any state valugy. The first part of the assumption implies
lim E| sup V% (:c, fim | u’,ﬁ’fi) — that this is finite. The second part of the assumption require
el wemt that the probability of competitors at largei(tail probability)

should go to zero quickly uniformly overm. The quantity
E {gg(ﬁ(m))lmmbzgIU("L) ~ f(m)*"] captures the effect of

) ) ) competitors at a higher state on the single period payoff of a
Notice that the expectation here is over the aggregate Gtateplayer.

players other tham, denoted byf. MPE requires the error to - To summarize, our development to this point has led to five
be zero for all(z, f), rather than in expectation; of coursegssumptions on our model:

in general, it will not be possible to find a single oblivious 1y pgsitive recurrence of the state evolution under ohlisio
policy that satisfies the AME property for arfy In particular, policies (Assumption 1):

in OE, actions taken by a player will perform poorly if the 5y Eyistence of MPE and OE (Assumption 2);

other players’ state is far from the long-run average aggeeg 3) Uniform boundedness of the payoff function of each
state. Thus, AME implies that the OE policy performs nearly player (Assumption 3):

as well as the non-oblivious best policy for those aggregate4) Gateaux differentiability of the payoff function of each
states of other players that occur with high probability. player (Assumption 4); and

1in general MPE is not unique. As stated in [5], there are jikelbe fewer 5) The light-tail Cor.]dltlon on the payoff function of each
OE than MPE, though no general result is known. player (Assumption 5).

VO (, fom | 5™ AT) | =0,




IV. ASYMPTOTIC RESULTS FOROBLIVIOUS EQUILIBRIUM  norm define above. Here, bof™ and (™) are defined over

In this section, we prove the AME property using a series SM€ oblivious policy vectog™. _
lemmas; our technical development is similar to that infg, ~ Lemma 3:For all i with 6; = 0, Hfi”fi - f(m)’eHl , 0
is streamlined by the use of a parsimonious set of assunsptioin probability asm — co. "
Assumptions 1-5 are kept throughout the remainder of the Proof: We can write

paper. B
Lemma 1:For all z and#, we have HfiTi - f(m)ﬂ’ L= ’f — fmo(y )‘
’ g
sup GE{ZﬂT_tSHP 7 (@i, iz, frm) Now, lete > 0 be given and let? be such that the light-tail
Mo OEME Ty ! condition in (7) is satisfied for the given Then,
|zt = x} < 0. s
. | g = g < max g (y) |1 ) - 7 )|
Proof: Follows trivially from assumptions 3. ] H ! 1,9° y<z° )
The next lemma shows that whenever two aggregate states _ 4
f and f arecloseto each other, the single period payoffs of (m) q
any player under these two aggregate states are also close to + Z g y)+ Z g'( (¥) -
each other. For an appropriate metric for the distance ltwe y>2° y>=°
two distributions, we define the — g norm as follows: _ gim — ot
£l g0 2 1F @)% (). By the light-tail assumption, for any > 0 and sufficiently
Y large 2, we haveC™ < e. Hence,P [Cﬁ’”) > e} — 0 as

The 1 — g norm puts higher weights on those states afi — oo.

competitors where a slight change in the fractional digtidn Also, E [B(m } = ¢!™ and hence by Markov inequality
of competitors causes a large change in the payoff functigge have, for anyy > 0 ande > 0, and sufficiently large:?,
Hence, it measures the distance between two distributionsz [ 5 [ ) S 5} < £. Hence limsup,, . P [Bgm) > 5} —0.
terms of their effect on the payoff function.

Now,
Lemma 2:For all¢ and for allf, f’ such that| f(™)||; 6 < W
1(m) H m ~(m 2
oo and || f"\"]|; 4o < oo, the following holds E(ffi}(y) _ fﬁi)(y))
7 (2, a, {0, m) = 7 (z,a, ), m) o[y o[y i
R Lajo=ur | |
< Hf( Y — YE) VE)
= Var (1 wje=
Proof: By the assumptions on the payoff function, for any ( - 1 2 ; { y})
x, a, f, f andm, we have,
’W‘g(x,a,f(m),m)—We(x,a7f(m),m)‘ (m— )
0 (m) (m) ) since the random variablé,, ,—,; is a Bernoulli random
_ /1 on (x’avf +ta(fm - f )vm) i variable WithE [1, ,—3] = ¢% (y) and Var(1(,,,—y)) =
o da T ¢%(y)(1—¢%(y)) < L. Hence,A"™ — 0 in probability as
m — 0Q. |
_ f(m)(y) _ f’(m) (y)> . The next lemma relates the present expected payoff when
a player uses a policy™?.
, Lemma 4:For all z, u™% andé;,
or” (2., f) + a(f0m) — '), m) o
daf,

0 (F + a(f0 — F'm)) (o)
< [ S |rw - 5] e
0 Y

-
1,9°

lim E[ZﬁTt 7T0i (IzTacI’? T?f(z7'7m) -
T=t

0; N(m) e M0 —
™ (‘Iiﬂﬁaiﬂ'?ffi 7m) ‘ ‘ Tit = L5 y =0.

. Proof: Let us define

The next lemma shows that, as — oo, the distribution of

. e AW &
the aggregate stagd™ approaches its meafi™ in the1, ¢’ it

6; (m) 0; #(m)
" (xi,t»ai,tyf_i7t7m)_7r ‘ (xi,taa@tvf_i ,m ) .



For anyé > 0, let us defineZ™? to be the event that The inequality follows sincgi™% maximizes the oblivious

Hf(m) — Fom H > 5. Then, we can write value function. To prove the AME property, we need to show
Lg? that E [T1] and E [T»] converge to zero as: becomes large.

° m ° m Using triangle inequality, we can write

Sora| < [ZM (am)

E[Ty] < E{igﬂ
_Zﬁr a (Amel_\zme) +Zﬂr tR (Azelzme), pt

b

0.
T (xZTvazTaf_177WL> -

T=t 7T0i (xi,'ra ai,‘ra .f~(_T)7 m) ’ | zi,t = ; ﬂm’ei ) I]'Tz:| 9
6 T—1 m,0 o
=1-5" ;5 B (A1 1z ) B < B[N 07" (virsair, f25m) -
T=t
where the last inequality follows from Lemma 2. Now, 9. (m) Cm.8 ~m
AT < 2sup; 7% (x,a, f™),m). This implies that the second T (Iiv“a“’f—iﬂ’m) ‘ | @i = i }
term in the above equation can be written as Here, expectation is also over the aggregate initial staté

T—t m.0 competitors. Lemma 4 then implies the result. ]
Zﬁ E (Az‘,t 12””’) Thus, for any typefl € O, the AME property holds. Since

T=t - |©| < oo, for a givenz asm — oo, the AME property holds
< 2257_% (Sup We(xi,ryai,ﬂf7 m)lzm,e> ’ uniformly for all # and hence for all players.
T=t f V. CONCLUSION
<9 sup E ™t sup 7 (23 1 s vs f ) Lgme | | As an extensio_n to the work done in [5], we have shown
- Hm,eepMe <Tzztﬁ fp7r (s w fm)ls 9) that the OE solution concept can be applied to a general class
o of stochastic games. Under certain mild technical conultio

= 9P (Zmﬂ) sup E Zﬁ“tsupwg(xi,r,ai,ﬂf,m) , the AME property holds and OE can be used for MPE

pmleMO | T f computation. This allows analysis of problems with high

where the last equality follows becausepume is attained dimension (large number of players) where MPE computation

by an oblivious policy andz; . and f* m)T are independent. is intractable. . . . oo :

By Lemma 3,P (Z%) — 0 asm — co. This along W|th For th_e speC|aI_ case of a dlscrete—nmg mﬂm_te-hon;on

Lemma 1 gives the desired result. stochastllc game with finite state space, the light 'tall coordi
Theorem 5 (Maln Theorem)A sequence of oblivious eqw aut(_)matlcally follows, and hence only Assumptions 1-3 are

librium policies o™ satisfies the AME property. That is, forSUffICIent to imply AME.
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