Wireless communications is a rapidly growing segment of the communications industry. The number of cell-phone users alone is expected to pass 1 billion worldwide within the next few years, and wireless LANs are also poised to experience exponential growth. Wireless technology not only supports voice, data, and video communication between portable devices located anywhere in the world, but also provides the backbone technology for sensor networks, smart homes, telemedicine and remote learning, and automated factories and vehicles. This course will cover the fundamental wireless communication techniques that support these various applications, with a primary focus on the communication system design.

We begin with a brief overview of current wireless systems and standards, including 2nd and 3rd generation cellular systems, wireless LANs, wide area wireless data systems, satellite networks, and Bluetooth. We then characterize the wireless channel, including path loss for different environments, random log-normal shadowing due to signal attenuation, and the flat and frequency-selective properties of multipath fading. Next we examine the fundamental capacity limits of wireless channels and some characteristics of the transmission strategies that achieve these limits. This gives us a performance bound against which we can compare practical schemes as well as insight into optimal transmitter and receiver designs. In fact, the capacity results indicate that for flat-fading channels, adaptive modulation or diversity can provide significant capacity improvements.

The next part of the course is spent investigating techniques for communicating over wireless channels. We first review digital modulation techniques and then study their performance under wireless channel impairments, including flat and frequency selective fading. We find that multipath fading severely degrades the performance of communication systems, and we therefore need methods to overcome the inherent impairments of the wireless channel, in particular flat and frequency selective fading.

We next investigate the design and performance of two techniques to mitigate the effects of flat fading: adaptive modulation and diversity. Three techniques to combat frequency-selective fading are then investigated: adaptive equalization, multicarrier modulation, and spread spectrum. We will also study the multiple access capabilities of spread spectrum with multiuser detection. The course concludes with a brief overview of wireless networks, including multiple and random access techniques, cellular system design, and ad-hoc network design.
Contents

1 Overview of Wireless Communications

1.1 History of Wireless Communications .. 1
1.2 Wireless Vision ... 5
1.3 Technical Issues ... 8
1.4 Current Wireless Systems .. 10
 1.4.1 Cellular Telephone Systems ... 10
 1.4.2 Cordless Phones .. 14
 1.4.3 Wireless LANs ... 15
 1.4.4 Wide Area Wireless Data Services 16
 1.4.5 Fixed Wireless Access .. 17
 1.4.6 Paging Systems .. 17
 1.4.7 Satellite Networks .. 18
 1.4.8 Bluetooth .. 18
 1.4.9 HomeRF ... 19
 1.4.10 Other Wireless Systems and Applications 19
1.5 The Wireless Spectrum ... 20
 1.5.1 Methods for Spectrum Allocation 20
 1.5.2 Spectrum Allocations for Existing Systems 20
1.6 Standards ... 21

2 Path Loss and Shadowing

2.1 Introduction to Mobile Radio Propagation 26
2.2 Free-Space Loss ... 27
2.3 Ray Tracing ... 27
 2.3.1 Two-Path Model .. 28
 2.3.2 Dielectric Canyon (Ten-Ray Model) 30
 2.3.3 General Ray Tracing ... 31
2.4 Empirical Models .. 33
 2.4.1 Piecewise Linear Models .. 33
 2.4.2 Okumura’s Model .. 33
 2.4.3 Hata Model ... 34
 2.4.4 COST231 Extension to Hata Model 34
 2.4.5 Walfisch/Bertoni Model .. 35
2.5 Simplified Path Loss Model .. 35
2.6 Log-Normal Shadowing ... 35
2.7 Combined Path Loss and Shadowing .. 37
3 Statistical Multipath Channel Models

3.1 Time-Varying Channel Impulse Response 45
3.2 Narrowband fading models .. 49
 3.2.1 Autocorrelation, Cross Correlation, and Power Spectral Density 49
 3.2.2 Envelope and Power Distributions .. 53
 3.2.3 Level Crossing Rate and Average Fade Duration 54
 3.2.4 Finite State Markov Models .. 56
3.3 Wideband Fading Models ... 57
 3.3.1 Multipath Intensity Profile .. 58
 3.3.2 Coherence Bandwidth ... 59
 3.3.3 Doppler Power Spectrum .. 60
 3.3.4 Scattering Function .. 60
 3.3.5 Envelope Correlation .. 61
3.4 Discrete-Time Model .. 61
3.5 Spatio-Temporal Models .. 62

4 Capacity of Wireless Channels .. 65
 4.1 Introduction ... 65
 4.2 System Model .. 66
 4.3 Capacity Analysis .. 67
 4.3.1 Capacity in AWGN ... 67
 4.3.2 No Side Information ... 67
 4.3.3 Side Information at the Transmitter and Receiver 68
 4.3.4 Side Information at the Receiver 69
 4.3.5 Channel Inversion .. 70
 4.4 Numerical Results ... 71
 4.5 Fading Channels with Transmitter and Receiver Diversity 72
 4.6 Frequency-Selective Fading Channels 73

5 Digital Modulation .. 77
 5.1 Signal Space Analysis .. 78
 5.1.1 System Model .. 78
 5.1.2 Basis Function Representation 79
 5.1.3 Receiver Design and Sufficient Statistics 80
 5.1.4 Maximum Likelihood Decision Criterion 82
 5.1.5 Error Probability and the Union Bound 83
 5.2 Passband Modulation Principles .. 87
 5.3 Linear Modulation .. 87
 5.3.1 Pulse Amplitude Modulation (M-PAM) 89
 5.3.2 Phase Shift Keying (M-PSK) ... 89
 5.3.3 Quadrature Amplitude Modulation (M-QAM) 90
 5.3.4 Constellation Shaping ... 91
 5.3.5 Differential Encoding .. 92
 5.3.6 Quadrature Offset ... 92
 5.4 Pulse Shaping .. 93
5.5 Constant Envelope (Nonlinear) Modulation ... 94

6 Performance of Digital Modulation over Wireless Channels 99
 6.1 AWGN Channels ... 99
 6.1.1 Channel Model and SNR ... 99
 6.1.2 Optimal Linear Demodulation: The Matched Filter 100
 6.1.3 BPSK Analysis .. 101
 6.2 Error Probability for Linear Modulations in AWGN 102
 6.3 Alternate Q Function Representation 104
 6.4 Fading ... 105
 6.4.1 Outage Probability .. 105
 6.4.2 Average Probability of Error 106
 6.4.3 Moment Generating Function Technique for Average P_e 107
 6.4.4 Combined Outage and Average Error Probability 109
 6.4.5 Effect of Channel Estimation Error on MQAM 110
 6.5 Doppler Spread .. 111
 6.6 Intersymbol Interference ... 112

7 Diversity ... 117
 7.1 Realization of Independent Fading Paths 117
 7.2 Diversity System Model .. 118
 7.3 Selection Combining .. 119
 7.4 Threshold Combining .. 121
 7.5 Maximal Ratio Combining .. 122
 7.6 Equal-Gain Combining ... 124
 7.7 A Unified Approach to Performance Analysis of MRC 125
 7.7.1 Signal, System, and Channel Models 126
 7.7.2 MRC Receiver .. 130
 7.7.3 Product Form Representation of the Conditional BER 130
 7.7.4 Average BER with Single Channel Reception ($L = 1$) ... 131
 7.7.5 Average BER with Multichannel Reception ($L > 1$) 133
 7.7.6 Average Symbol Error Rate of M-PSK Signals 135
 7.7.7 Average Symbol Error Rate of Square M-QAM Signals 135
 7.7.8 Noncoherent and Differentially Coherent Modulation 137
 7.8 Transmitter Diversity .. 137

8 Coding for Wireless Channels ... 147
 8.1 Code Design Considerations .. 147
 8.2 Linear Block Codes .. 148
 8.2.1 Binary Linear Block Codes 149
 8.2.2 Generator Matrix ... 150
 8.2.3 Parity Check Matrix and Syndrome Testing 152
 8.2.4 Cyclic Codes ... 153
 8.2.5 Hard Decision Decoding (HDD) 155
 8.2.6 Probability of Error for HDD in AWGN 157
 8.2.7 Common Linear Block Codes 158
 8.2.8 Nonbinary Block Codes: the Reed Solomon Code 159
8.2.9 Block Coding and Interleaving for Fading Channels .. 159
8.3 Convolutional Codes .. 160
 8.3.1 Code Characterization: Trellis Diagrams ... 161
 8.3.2 Maximum Likelihood Decoding ... 164
 8.3.3 The Viterbi Algorithm .. 166
 8.3.4 Distance Properties .. 167
 8.3.5 State Diagrams and Transfer Functions .. 168
 8.3.6 Error Probability for Convolutional Codes ... 170
 8.3.7 Convolutional Coding and Interleaving for Fading Channels 172
8.4 Concatenated Codes .. 172
8.5 Turbo Codes .. 173
8.6 Low Density Parity Check Codes .. 174
8.7 Coded Modulation .. 176
 8.7.1 Coded Modulation for AWGN Channels .. 176
 8.7.2 Coded Modulation with Interleaving for Fading Channels 179
 8.7.3 Adaptive Coded Modulation ... 179
8.8 Unequal Error Protection Codes ... 181

9 Adaptive Modulation .. 189
 9.1 Introduction .. 189
 9.2 System Model ... 190
 9.3 Variable-Rate Variable-Power MQAM ... 192
 9.4 Constellation Restriction ... 195
 9.4.1 Optimal Adaptation ... 195
 9.4.2 Suboptimal Policies ... 198
 9.5 Simulation Results ... 199
 9.6 Channel Estimation Error and Delay ... 201
 9.7 Coding Issues and Capacity Revisited .. 203

10 Multiple Antenna Systems ... 209
 10.1 Multiple Input Multiple Output (MIMO) Systems .. 209
 10.1.1 The Narrowband Multiple Antenna System Model 209
 10.1.2 Transmit Precoding and Receiver Shaping .. 210
 10.1.3 Parallel Decomposition of the MIMO Channel ... 211
 10.1.4 MIMO Channel Capacity ... 212
 10.1.5 Beamforming ... 212
 10.2 Space-time codes ... 214
 10.3 Smart Antennas ... 214

11 Equalization ... 223
 11.1 Equalizer Types ... 224
 11.2 Folded Spectrum and ISI-Free Transmission .. 225
 11.3 Linear Equalizers .. 227
 11.3.1 Zero Forcing (ZF) Equalizers ... 228
 11.3.2 Minimum Mean Square Error (MMSE) Equalizer .. 229
 11.4 Maximum Likelihood Sequence Estimation ... 231
 11.5 Decision-Feedback Equalization .. 232
11.6 Equalizer Training and Tracking ... 233

12 Multicarrier Modulation ... 239
 12.1 Orthogonal Frequency Division Multiplexing (OFDM) 240
 12.2 Discrete Implementation of OFDM (Discrete Multitone) 243
 12.3 Fading across Subcarriers .. 244
 12.3.1 Frequency Equalization ... 244
 12.3.2 Precoding ... 244
 12.3.3 Adaptive Loading ... 245
 12.3.4 Coding across Subchannels .. 246

13 Spread Spectrum and RAKE Receivers ... 251
 13.1 Spread Spectrum Modulation .. 251
 13.2 Pseudorandom (PN) Sequences (Spreading Codes) 252
 13.3 Direct Sequence Spread Spectrum ... 254
 13.4 RAKE receivers ... 257
 13.5 Spread Spectrum Multiple Access ... 258
 13.5.1 Spreading Codes for Multiple Access 258
 13.5.2 Broadcast Channels ... 259
 13.5.3 Multiple Access Channels .. 262
 13.5.4 Multiuser Detection ... 265
 13.6 Frequency-Hopping .. 265

14 Multiuser Systems ... 269
 14.1 Multiuser Channels: Broadcast and Multiple Access 269
 14.2 Multiple Access ... 270
 14.2.1 Frequency Division ... 270
 14.2.2 Time-Division ... 271
 14.2.3 Code-Division ... 271
 14.2.4 Standards Debate .. 272
 14.3 Broadcast Channel Capacity Region .. 272
 14.3.1 The AWGN Broadcast Channel Model 273
 14.3.2 Capacity Region in AWGN under TD, FD, and CD 273
 14.3.3 Fading Broadcast Channel Capacity 276
 14.4 Multiple Access Channel Capacity Region ... 281
 14.4.1 The AWGN Multiple Access Channel 281
 14.4.2 Fading Multiaccess Channels .. 282
 14.5 Random Access ... 283
 14.6 Scheduling .. 285
 14.7 Power Control .. 286

15 Cellular Systems ... 291
 15.1 Cellular System Design .. 292
 15.2 Frequency Reuse in Cellular Systems .. 292
 15.2.1 Frequency Reuse in Code-Division Systems 292
 15.2.2 Frequency Reuse in Time and Frequency Division Systems 293
 15.3 Dynamic Resource Allocation in Cellular Systems 293
15.4 Area Spectral Efficiency .. 295
15.5 Interference Model ... 296
 15.5.1 Reuse Distance, Multicell Capacity, and Area Efficiency 296
 15.5.2 Efficiency Calculations ... 297
15.6 Power Control Impact on Interference .. 301
15.7 Interference Mitigation .. 303

16 Ad-Hoc Networks ... 307
 16.0.1 Applications .. 310
 16.0.2 Cross Layer Design ... 315
16.1 Link Design Issues ... 318
 16.1.1 Fundamental Capacity Limits ... 318
 16.1.2 Coding .. 319
 16.1.3 Multiple Antennas ... 319
 16.1.4 Power control ... 320
 16.1.5 Adaptive Resource Allocation ... 320
16.2 Medium Access Control Design Issues ... 321
16.3 Network Design Issues ... 322
 16.3.1 Neighbor Discovery and Network Connectivity 322
16.4 Routing ... 323
 16.4.1 Scalability and Distributed Protocols 324
 16.4.2 Network Capacity .. 325
16.5 Application Design Issues .. 325
 16.5.1 Adaptive QoS .. 325
 16.5.2 Application Adaptation and Cross Layer Design Revisited 326
Chapter 1

Overview of Wireless Communications

Wireless communications is, by any measure, the fastest growing segment of the communications industry. As such, it has captured the attention of the media and the imagination of the public. Cellular phones have experienced exponential growth over the last decade, and this growth continues unabated worldwide, with more than a billion worldwide cell phone users projected in the near future. Indeed, cellular phones have become a critical business tool and part of everyday life in most developed countries, and are rapidly supplanting antiquated wireline systems in many developing countries. In addition, wireless local area networks are currently poised to supplement or replace wired networks in many businesses and campuses. Many new applications, including wireless sensor networks, automated highways and factories, smart homes and appliances, and remote telemedicine, are emerging from research ideas to concrete systems. The explosive growth of wireless systems coupled with the proliferation of laptop and palmtop computers indicate a bright future for wireless networks, both as stand-alone systems and as part of the larger networking infrastructure. However, many technical challenges remain in designing robust wireless networks that deliver the performance necessary to support emerging applications. In this introductory chapter we will briefly review the history of wireless networks, from the smoke signals of the Pre-industrial age to the cellular, satellite, and other wireless networks of today. We then discuss the wireless vision in more detail, including the technical challenges that must be overcome to make this vision a reality. We will also describe the current wireless systems in operation today as well as emerging systems and standards. The huge gap between the performance of current systems and the vision for future systems indicates that much research remains to be done to make the wireless vision a reality.

1.1 History of Wireless Communications

The first wireless networks were developed in the Pre-industrial age. These systems transmitted information over line-of-sight distances (later extended by telescopes) using smoke signals, torch signaling, flashing mirrors, signal flares, or semaphore flags. An elaborate set of signal combinations was developed to convey complex messages with these rudimentary signals. Observation stations were built on hilltops and along roads to relay these messages over large distances. These early communication networks were replaced first by the telegraph network (invented by Samuel Morse in 1838) and later by the telephone. In 1895, a few decades after the telephone was invented, Marconi demonstrated the first radio transmission from the Isle of Wight to a tugboat 18 miles away, and radio communications was born. Radio technology advanced rapidly to enable transmissions over larger distances with better quality, less power, and smaller, cheaper devices, thereby enabling public and private radio communications, television, and
wireless networking.

Early radio systems transmitted analog signals. Today most radio systems transmit digital signals composed of binary bits, where the bits are obtained directly from a data signal or by digitizing an analog voice or music signal. A digital radio can transmit a continuous bit stream or it can group the bits into packets. The latter type of radio is called a packet radio and is characterized by bursty transmissions: the radio is idle except when it transmits a packet. The first network based on packet radio, ALOHANET, was developed at the University of Hawaii in 1971. This network enabled computer sites at seven campuses spread out over four islands to communicate with a central computer on Oahu via radio transmission. The network architecture used a star topology with the central computer at its hub. Any two computers could establish a bi-directional communications link between them by going through the central hub. ALOHANET incorporated the first set of protocols for channel access and routing in packet radio systems, and many of the underlying principles in these protocols are still in use today. The U.S. military was extremely interested in the combination of packet data and broadcast radio inherent to ALOHANET. Throughout the 70’s and early 80’s the Defense Advanced Research Projects Agency (DARPA) invested significant resources to develop networks using packet radios for tactical communications in the battlefield. The nodes in these ad hoc wireless networks had the ability to self-configure (or reconfigure) into a network without the aid of any established infrastructure. DARPA’s investment in ad hoc networks peaked in the mid 1980’s, but the resulting networks fell far short of expectations in terms of speed and performance. DARPA has continued work on ad hoc wireless network research for military use, but many technical challenges in terms of performance and robustness remain. Packet radio networks have also found commercial application in supporting wide-area wireless data services. These services, first introduced in the early 1990’s, enable wireless data access (including email, file transfer, and web browsing) at fairly low speeds, on the order of 20 Kbps. The market for these wide-area wireless data services is relatively flat, due mainly to their low data rates, high cost, and lack of “killer applications”. Next-generation cellular services are slated to provide wireless data in addition to voice, which will provide stiff competition to these data-only services.

The introduction of wired Ethernet technology in the 1970’s steered many commercial companies away from radio-based networking. Ethernet’s 10 Mbps data rate far exceeded anything available using radio, and companies did not mind running cables within and between their facilities to take advantage of these high rates. In 1985 the Federal Communications Commission (FCC) enabled the commercial development of wireless LANs by authorizing the public use of the Industrial, Scientific, and Medical (ISM) frequency bands for wireless LAN products. The ISM band was very attractive to wireless LAN vendors since they did not need to obtain an FCC license to operate in this band. However, the wireless LAN systems could not interfere with the primary ISM band users, which forced them to use a low power profile and an inefficient signaling scheme. Moreover, the interference from primary users within this frequency band was quite high. As a result these initial LAN systems had very poor performance in terms of data rates and coverage. This poor performance, coupled with concerns about security, lack of standardization, and high cost (the first network adaptors listed for $1,400 as compared to a few hundred dollars for a wired Ethernet card) resulted in weak sales for these initial LAN systems. Few of these systems were actually used for data networking; they were relegated to low-tech applications like inventory control. The current generation of wireless LANS, based on the IEEE 802.11b and 802.11a standards, have better performance, although the data rates are still relatively low (effective data rates on the order of 2 Mbps for 802.11b and around 10 Mbps for 802.11a) and the coverage area is still small (100-500 feet). Wired Ethernets today offer data rates of 100 Mbps, and the performance gap between wired and wireless LANs is likely to increase over time without additional spectrum allocation. Despite the big data rate differences, wireless LANs are becoming the preferred Internet access method in many
homes, offices, and campus environments due to their convenience and freedom from wires. However, most wireless LANs support applications that are not bandwidth-intensive (email, file transfer, web browsing) and typically have only one user at a time accessing the system. The challenge for widespread wireless LAN acceptance and use will be for the wireless technology to support many users simultaneously, especially if bandwidth-intensive applications become more prevalent.

By far the most successful application of wireless networking has been the cellular telephone system. Cellular telephones are projected to have a billion subscribers worldwide within the next few years. The convergence of radio and telephony began in 1915, when wireless voice transmission between New York and San Francisco was first established. In 1946 public mobile telephone service was introduced in 25 cities across the United States. These initial systems used a central transmitter to cover an entire metropolitan area. This inefficient use of the radio spectrum coupled with the state of radio technology at that time severely limited the system capacity: thirty years after the introduction of mobile telephone service the New York system could only support 543 users.

A solution to this capacity problem emerged during the 50's and 60's when researchers at AT&T Bell Laboratories developed the cellular concept [1]. Cellular systems exploit the fact that the power of a transmitted signal falls off with distance. Thus, the same frequency channel can be allocated to users at spatially-separate locations with minimal interference between the users. Using this premise, a cellular system divides a geographical area into adjacent, non-overlapping, "cells". Different channel sets are assigned to each cell, and cells that are assigned the same channel set are spaced far enough apart so that interference between the mobiles in these cells is small. Each cell has a centralized transmitter and receiver (called a base station) that communicates with the mobile units in that cell, both for control purposes and as a call relay. All base stations have high-bandwidth connections to a mobile telephone switching office (MTSO), which is itself connected to the public-switched telephone network (PSTN). The handoff of mobile units crossing cell boundaries is typically handled by the MTSO, although in current systems some of this functionality is handled by the base stations and/or mobile units.

The original cellular system design was finalized in the late 60's. However, due to regulatory delays from the FCC, the system was not deployed until the early 80's, by which time much of the original technology was out-of-date. The explosive growth of the cellular industry took most everyone by surprise, especially the original inventors at AT&T, since AT&T basically abandoned the cellular business by the early 80's to focus on fiber optic networks. The first analog cellular system deployed in Chicago in 1983 was already saturated by 1984, at which point the FCC increased the cellular spectral allocation from 40 MHz to 50 MHz. As more and more cities became saturated with demand, the development of digital cellular technology for increased capacity and better performance became essential.

The second generation of cellular systems are digital. In addition to voice communication, these systems provide email, voice mail, and paging services. Unfortunately, the great market potential for cellular phones led to a proliferation of digital cellular standards. Today there are three different digital cellular phone standards in the U.S. alone, and other standards in Europe and Japan, none of which are compatible. The fact that different cities have different incompatible standards makes roaming throughout the U.S. using one digital cellular phone impossible. Most cellular phones today are dual-mode: they incorporate one of the digital standards along with the old analog standard, since only the analog standard provides universal coverage throughout the U.S. More details on today's digital cellular systems will be given in Section 1.4.1.

Radio paging systems are another example of an extremely successful wireless data network, with 50 million subscribers in the U.S. alone. However, their popularity is starting to wane with the widespread penetration and competitive cost of cellular telephone systems. Paging systems allow coverage over very wide areas by simultaneously broadcasting the pager message at high power from multiple base stations or
satellites. These systems have been around for many years. Early radio paging systems were analog 1 bit messages signaling a user that someone was trying to reach him or her. These systems required callback over the regular telephone system to obtain the phone number of the paging party. Recent advances now allow a short digital message, including a phone number and brief text, to be sent to the paging as well. In paging systems most of the complexity is built into the transmitters, so that pager receivers are small, lightweight, and have a long battery life. The network protocols are also very simple since broadcasting a message over all base stations requires no routing or handoff. The spectral inefficiency of these simultaneous broadcasts is compensated by limiting each message to be very short. Paging systems continue to evolve to expand their capabilities beyond very low-rate one-way communication. Current systems are attempting to implement “answer-back” capability, i.e. two-way communication. This requires a major change in the pager design, since it must now transmit signals in addition to receiving them, and the transmission distances can be quite large. Recently many of the major paging companies have teamed up with the palmtop computer makers to incorporate paging functions into these devices [2]. This development indicates that short messaging without additional functionality is no longer competitive given other wireless communication options.

Commercial satellite communication systems are now emerging as another major component of the wireless communications infrastructure. Satellite systems can provide broadcast services over very wide areas, and are also necessary to fill the coverage gap between high-density user locations. Satellite mobile communication systems follow the same basic principle as cellular systems, except that the cell base stations are now satellites orbiting the earth. Satellite systems are typically characterized by the height of the satellite orbit, low-earth orbit (LEOs at roughly 2000 Km. altitude), medium-earth orbit (MEOs at roughly 9000 Km. altitude), or geosynchronous orbit (GEOs at roughly 40,000 Km. altitude). The geosynchronous orbits are seen as stationary from the earth, whereas the satellites with other orbits have their coverage area change over time. The disadvantage of high altitude orbits is that it takes a great deal of power to reach the satellite, and the propagation delay is typically too large for delay-constrained applications like voice. However, satellites at these orbits tend to have larger coverage areas, so fewer satellites (and dollars) are necessary to provide wide-area or global coverage.

The concept of using geosynchronous satellites for communications was first suggested by the science fiction writer Arthur C. Clarke in 1945. However, the first deployed satellites, the Soviet Union’s Sputnik in 1957 and the Nasa/Bell Laboratories’ Echo-1 in 1960, were not geosynchronous due to the difficulty of lifting a satellite into such a high orbit. The first GEO satellite was launched by Hughes and Nasa in 1963 and from then until recently GEOs dominated both commercial and government satellite systems. The trend in current satellite systems is to use lower orbits so that lightweight handheld devices can communicate with the satellite [3]. Inmarsat is the most well-known GEO satellite system today, but most new systems use LEO orbits. These LEOs provide global coverage but the link rates remain low due to power and bandwidth constraints. These systems allow calls any time and anywhere using a single communications device. The services provided by satellite systems include voice, paging, and messaging services, all at fairly low data rates [3, 4]. The LEO satellite systems that have been deployed are not experiencing the growth they had anticipated, and one of the first systems (Iridium) was forced into bankruptcy and went out of business.

A natural area for satellite systems is broadcast entertainment. Direct broadcast satellites operate in the 12 GHz frequency band. These systems offer hundreds of TV channels and are major competitors to cable. Satellite-delivered digital radio is an emerging application in the 2.3 GHz frequency band. These systems offer digital audio broadcasts nationwide at near-CD quality. Digital audio broadcasting is also quite popular in Europe.
1.2 Wireless Vision

The vision of wireless communications supporting information exchange between people or devices is the communications frontier of the next century. This vision will allow people to operate a virtual office anywhere in the world using a small handheld device - with seamless telephone, modem, fax, and computer communications. Wireless networks will also be used to connect together palmtop, laptop, and desktop computers anywhere within an office building or campus, as well as from the corner cafe. In the home these networks will enable a new class of intelligent home electronics that can interact with each other and with the Internet in addition to providing connectivity between computers, phones, and security/monitoring systems. Such smart homes can also help the elderly and disabled with assisted living, patient monitoring, and emergency response. Video teleconferencing will take place between buildings that are blocks or continents apart, and these conferences can include travelers as well, from the salesperson who missed his plane connection to the CEO off sailing in the Caribbean. Wireless video will be used to create remote classrooms, remote training facilities, and remote hospitals anywhere in the world. Wireless sensors have an enormous range of both commercial and military applications. Commercial applications include monitoring of fire hazards, hazardous waste sites, stress and strain in buildings and bridges, or carbon dioxide movement and the spread of chemicals and gasses at a disaster site. These wireless sensors will self-configure into a network to process and interpret sensor measurements and then convey this information to a centralized control location. Military applications include identification and tracking of enemy targets, detection of chemical and biological attacks, and the support of unmanned robotic vehicles. Finally, wireless networks enable distributed control systems, with remote devices, sensors, and actuators linked together via wireless communication channels. Such networks are imperative for coordinating unmanned mobile units and greatly reduce maintenance and reconfiguration costs over distributed control systems with wired communication links, for example in factory automation.

The various applications described above are all components of the wireless vision. So what, exactly, is wireless communications? There are many different ways to segment this complex topic into different applications, systems, or coverage regions. Wireless applications include voice, Internet access, web browsing, paging and short messaging, subscriber information services, file transfer, video teleconferencing, sensing, and distributed control. Systems include cellular telephone systems, wireless LANs, wide-area wireless data systems, satellite systems, and ad hoc wireless networks. Coverage regions include in-building, campus, city, regional, and global. The question of how best to characterize wireless communications along these various segments has resulted in considerable fragmentation in the industry, as evidenced by the many different wireless products, standards, and services being offered or proposed. One reason for this fragmentation is that different wireless applications have different requirements. Voice systems have relatively low data rate requirements (around 20 Kbps) and can tolerate a fairly high probability of bit error (bit error rates, or BERs, of around 10^{-3}), but the total delay must be less than 100 msec or it becomes noticeable to the end user. On the other hand, data systems typically require much higher data rates (1-100 Mbps) and very small BERs (the target BER is 10^{-8} and all bits received in error must be retransmitted) but do not have a fixed delay requirement. Real-time video systems have high data rate requirements coupled with the same delay constraints as voice systems, while paging and short messaging have very low data rate requirements and no delay constraints. These diverse requirements for different applications make it difficult to build one wireless system that can satisfy all these requirements simultaneously. Wired networks are moving towards integrating the diverse requirements of different systems using a single protocol (e.g. ATM or SONET). This integration requires that the most stringent requirements for all applications be met simultaneously. While this is possible on wired networks, with data rates on the order of Gbps and BERs on the order of 10^{-12}, it is not possible on
wireless networks, which have much lower data rates and higher BERs. Therefore, at least in the near future, wireless systems will continue to be fragmented, with different protocols tailored to support the requirements of different applications.

Will there be a large demand for all wireless applications, or will some flourish while others vanish? Companies are investing large sums of money to build multimedia wireless systems, yet the only highly profitable wireless application so far is voice. Experts have been predicting a huge market for wireless data services and products for the last 10 years, but the market for these products remains relatively small with sluggish growth. To examine the future of wireless data, it is useful to see the growth of various communication services over the last five years, as shown in Figure 1.1. In this figure we see that cellular and paging subscribers are growing exponentially. This growth is exceeded only by the growing demand for Internet access, driven by web browsing and email exchange. The number of laptop and palmtop computers is also growing steadily. These trends indicate that people want to communicate while on the move. They also want to take their computers wherever they go. It is therefore reasonable to assume that people want the same data communications capabilities on the move as they enjoy in their home or office. Yet the demand for high-speed wireless data has not materialized, except for relatively stationary users accessing the network via a wireless LAN. Why the discrepancy? Perhaps the main reason for the lack of enthusiasm in wireless data for highly mobile users is the high cost and poor performance of today’s systems, along with a lack of “killer applications” for mobile users beyond voice and low-rate data.

![Figure 1.1: Growth of Wireless Communications Markets](image)

Consider the performance gap between wired and wireless networks for both local and wide-area networks, as shown in Figures 1.2 and 1.3. Wired local-area networks have data rates that are two orders of magnitude higher than their wireless counterparts. ATM is promising 100,000 Kbps for wired wide-area networks, while today’s wide-area wireless data services provide only tens of Kbps. Moreover, the performance gap between wired and wireless networks appears to be growing. Thus, the most formidable obstacle to the growth of wireless data systems is their performance. Many technical challenges must be overcome to improve wireless network performance such that users will accept this performance in exchange for mobility.
Figure 1.2: Performance Gap for Local Area Networks

Figure 1.3: Performance Gap for Wide Area Networks
1.3 Technical Issues

The technical problems that must be solved to make the wireless vision a reality extend across all levels of the system design. At the hardware level the terminal must have multiple modes of operation to support the different applications and media. Desktop computers currently have the capability to process voice, image, text, and video data, but breakthroughs in circuit design are required to implement multimode operation in a small, lightweight, handheld device. Since most people don’t want to carry around a twenty pound battery, the signal processing and communications hardware of the portable terminal must consume very little power, which will impact higher levels of the system design. Many of the signal processing techniques required for efficient spectral utilization and networking demand much processing power, precluding the use of low power devices. Hardware advances for low power circuits with high processing ability will relieve some of these limitations. However, placing the processing burden on fixed sites with large power resources has and will continue to dominate wireless system designs. The associated bottlenecks and single points-of-failure are clearly undesirable for the overall system. Moreover, in some applications (e.g. sensors) network nodes will not be able to recharge their batteries. In this case the finite battery energy must be allocated efficiently across all layers of the network protocol stack [5]. The finite bandwidth and random variations of the communication channel will also require robust compression schemes which degrade gracefully as the channel degrades.

The wireless communication channel is an unpredictable and difficult communications medium. First of all, the radio spectrum is a scarce resource that must be allocated to many different applications and systems. For this reason spectrum is controlled by regulatory bodies both regionally and globally. In the U.S. spectrum is allocated by the FCC, in Europe the equivalent body is the European Telecommunications Standards Institute (ETSI), and globally spectrum is controlled by the International Telecommunications Union (ITU). A regional or global system operating in a given frequency band must obey the restrictions for that band set forth by the corresponding regulatory body as well as any standards adopted for that spectrum. Spectrum can also be very expensive since in most countries, including the U.S., spectral licenses are now auctioned to the highest bidder. In the 2 GHz spectral auctions of the early 90s, companies spent over nine billion dollars for licenses, and the recent auctions in Europe for 3G spectrum garnered over 100 billion dollars. The spectrum obtained through these auctions must be used extremely efficiently to get a reasonable return on its investment, and it must also be reused over and over in the same geographical area, thus requiring cellular system designs with high capacity and good performance. At frequencies around several Gigahertz wireless radio components with reasonable size, power consumption, and cost are available. However, the spectrum in this frequency range is extremely crowded. Thus, technological breakthroughs to enable higher frequency systems with the same cost and performance would greatly reduce the spectrum shortage, although path loss at these higher frequencies increases, thereby limiting range.

As a signal propagates through a wireless channel, it experiences random fluctuations in time if the transmitter or receiver is moving, due to changing reflections and attenuation. Thus, the characteristics of the channel appear to change randomly with time, which makes it difficult to design reliable systems with guaranteed performance. Security is also more difficult to implement in wireless systems, since the airwaves are susceptible to snooping from anyone with an RF antenna. The analog cellular systems have no security, and you can easily listen in on conversations by scanning the analog cellular frequency band. All digital cellular systems implement some level of encryption. However, with enough knowledge, time and determination most of these encryption methods can be cracked and, indeed, several have been compromised. To support applications like electronic commerce and credit card transactions, the wireless network must be secure against such listeners.

Wireless networking is also a significant challenge [23, 24, 25, 26]. The network must be able to
locate a given user wherever it is amongst millions of globally-distributed mobile terminals. It must then route a call to that user as it moves at speeds of up to 100 mph. The finite resources of the network must be allocated in a fair and efficient manner relative to changing user demands and locations. Moreover, there currently exists a tremendous infrastructure of wired networks: the telephone system, the Internet, and fiber optic cable, which should be used to connect wireless systems together into a global network. However, wireless systems with mobile users will never be able to compete with wired systems in terms of data rate and reliability. The design of protocols to interface between wireless and wired networks with vastly different performance capabilities remains a challenging topic of research.

Perhaps the most significant technical challenge in wireless network design is an overhaul of the design process itself. Wired networks are mostly designed according to the layers of the OSI model: each layer is designed independent from the other layers with baseline mechanisms to interface between layers. This methodology greatly simplifies network design, although it leads to some inefficiency and performance loss due to the lack of a global design optimization. However, the large capacity and good reliability of wired network links make it easier to buffer high-level network protocols from the lower level protocols for link transmission and access, and the performance loss resulting from this isolated protocol design is fairly low. However, the situation is very different in a wireless network. Wireless links can exhibit very poor performance, and this performance along with user connectivity and network topology changes over time. In fact, the very notion of a wireless link is somewhat fuzzy due to the nature of radio propagation. The dynamic nature and poor performance of the underlying wireless communication channel indicates that high-performance wireless networks must be optimized for this channel and must adapt to its variations as well as to user mobility. Thus, these networks will require an integrated and adaptive protocol stack across all layers of the OSI model, from the link layer to the application layer.

In summary, technological advances in the following areas are needed to implement the wireless vision outlined above:

- Measurements and models for wireless indoor and outdoor channels.
- Hardware for low-power handheld computer and communication terminals.
- Techniques to mitigate wireless channel impairments and to improve the quality and spectral efficiency of communication over wireless channels.
- Better means of sharing the limited spectrum to accommodate the different wireless applications.
- Protocols for routing and mobility management which support users on the move.
- An architecture to connect the various wireless subnetworks together and to the backbone wireline network.
- An integrated and adaptive protocol stack for wireless networks that extends across all layers of the OSI model.

Given these requirements, the field of wireless communications draws from many areas of expertise, including physics, communications, signal processing, network theory and design, software design, and hardware design. Moreover, given the fundamental limitations of the wireless channels and the explosive demand for its utilization, communication between these interdisciplinary groups is necessary to implement the most rudimentary shell of the wireless vision depicted above.

We now give an overview of the wireless systems in operation today. It will be clear from this overview that the wireless vision remains a distant goal, with many challenges remaining before it will be realized. Many of these challenges will be examined in detail in later chapters.
1.4 Current Wireless Systems

1.4.1 Cellular Telephone Systems

Cellular telephone systems, also referred to as Personal Communication Systems (PCS), are extremely popular and lucrative worldwide: these systems have sparked much of the optimism about the future of wireless networks. Cellular telephone systems are designed to provide two-way voice communication at vehicle speeds with regional or national coverage. Cellular systems were initially designed for mobile terminals inside vehicles with antennas mounted on the vehicle roof. Today these systems have evolved to support lightweight handheld mobile terminals operating inside and outside buildings at both pedestrian and vehicle speeds.

The basic premise behind cellular system design is frequency reuse, which exploits path loss to reuse the same frequency spectrum at spatially-separated locations. Specifically, the coverage area of a cellular system is divided into nonoverlapping cells where some set of channels is assigned to each cell. This same channel set is used in another cell some distance away, as shown in Figure 1.4, where f_i denotes the channel set used in a particular cell. Operation within a cell is controlled by a centralized base station, as described in more detail below. The interference caused by users in different cells operating on the same channel set is called intercell interference. The spatial separation of cells that reuse the same channel set, the reuse distance, should be as small as possible to maximize the spectral efficiency obtained by frequency reuse. However, as the reuse distance decreases, intercell interference increases, due to the smaller propagation distance between interfering cells. Since intercell interference must remain below a given threshold for acceptable system performance, reuse distance cannot be reduced below some minimum value. In practice it is quite difficult to determine this minimum value since both the transmitting and interfering signals experience random power variations due to path loss, shadowing, and multipath. In order to determine the best reuse distance and base station placement, an accurate characterization of signal propagation within the cells is needed. This characterization is usually obtained using detailed analytical models, sophisticated computer-aided modeling, or empirical measurements.

Initial cellular system designs were mainly driven by the high cost of base stations, approximately one million dollars apiece. For this reason early cellular systems used a relatively small number of cells to cover an entire city or region. The cell base stations were placed on tall buildings or mountains and transmitted at very high power with cell coverage areas of several square miles. These large cells are called macrocells. Signals propagated out from base stations uniformly in all directions, so a mobile moving in a circle around the base station would have approximately constant received power. This circular contour of constant power yields a hexagonal cell shape for the system, since a hexagon is the closest shape to a circle that can cover a given area with multiple nonoverlapping cells.

Cellular telephone systems are now evolving to smaller cells with base stations close to street level or inside buildings transmitting at much lower power. These smaller cells are called microcells or picocells, depending on their size. This evolution is driven by two factors: the need for higher capacity in areas with high user density and the reduced size and cost of base station electronics. A cell of any size can support roughly the same number of users if the system is scaled accordingly. Thus, for a given coverage area a system with many microcells has a higher number of users per unit area than a system with just a few macrocells. Small cells also have better propagation conditions since the lower base stations have reduced shadowing and multipath. In addition, less power is required at the mobile terminals in microcellular systems, since the terminals are closer to the base stations. However, the evolution to smaller cells has complicated network design. Mobiles traverse a small cell more quickly than a large cell, and therefore handoffs must be processed more quickly. In addition, location management becomes more complicated, since there are more cells within a given city where a mobile may be located. It is also harder to develop
general propagation models for small cells, since signal propagation in these cells is highly dependent on base station placement and the geometry of the surrounding reflectors. In particular, a hexagonal cell shape is not a good approximation to signal propagation in microcells. Microcellular systems are often designed using square or triangular cell shapes, but these shapes have a large margin of error in their approximation to microcell signal propagation [7].

All base stations in a city are connected via a high-speed communications link to a mobile telephone switching office (MTSO), as shown in Figure 1.5. The MTSO acts as a central controller for the network, allocating channels within each cell, coordinating handoffs between cells when a mobile traverses a cell boundary, and routing calls to and from mobile users in conjunction with the public switched telephone network (PSTN). A new user located in a given cell requests a channel by sending a call request to the cell’s base station over a separate control channel. The request is relayed to the MTSO, which accepts the call request if a channel is available in that cell. If no channels are available then the call request is rejected. A call handoff is initiated when the base station or the mobile in a given cell detects that the received signal power for that call is approaching a given minimum threshold. In this case the base station informs the MTSO that the mobile requires a handoff, and the MTSO then queries surrounding base stations to determine if one of these stations can detect that mobile’s signal. If so then the MTSO coordinates a handoff between the original base station and the new base station. If no channels are available in the cell with the new base station then the handoff fails and the call is terminated. False handoffs may also be initiated if a mobile is in a deep fade, causing its received signal power to drop below the minimum threshold even though it may be nowhere near a cell boundary.

Cellular telephone systems have recently moved from analog to digital technology. Digital technology has many advantages over analog. The components are cheaper, faster, smaller, and require less power. Voice quality is improved due to error correction coding. Digital systems also have higher capacity than analog systems since they are not limited to frequency division for multiple access, and they can take advantage of advanced compression techniques and voice activity factors. In addition, encryption
techniques can be used to secure digital signals against eavesdropping. All cellular systems being deployed today are digital, and these systems provide voice mail, paging, and email services in addition to voice. Due to their lower cost and higher efficiency, service providers have used aggressive pricing tactics to encourage user migration from analog to digital systems. Since they are relatively new, digital systems do not always work as well as the old analog ones. Users experience poor voice quality, frequent call dropping, short battery life, and spotty coverage in certain areas. System performance will certainly improve as the technology and networks mature. However, it is unlikely that cellular phones will provide the same quality as wireline service any time soon. The great popularity of cellular systems indicates that users are willing to tolerate inferior voice communications in exchange for mobility.

Spectral sharing in digital cellular can be done using frequency-division, time-division, code-division (spread spectrum), or hybrid combinations of these techniques (see Chapter 14). In time-division the signal occupies the entire frequency band, and is divided into time slots t_i which are reused in distant cells [8]. Time division is depicted by Figure 1.4 if the f_s are replaced by t_i. Time-division is more difficult to implement than frequency-division since the users must be time-synchronized. However, it is easier to accommodate multiple data rates with time-division since multiple timeslots can be assigned to a given user. Spectral sharing can also be done using code division, which is commonly implemented using either direct-sequence or frequency-hopping spread spectrum [9]. In direct-sequence each user modulates its data sequence by a different pseudorandom chip sequence which is much faster than the data sequence. In the frequency domain, the narrowband data signal is convolved with the wideband chip signal, resulting in a signal with a much wider bandwidth than the original data signal - hence the name spread spectrum. In frequency hopping the carrier frequency used to modulate the narrowband data signal is varied by a pseudorandom chip sequence which may be faster or slower than the data sequence. Since the carrier frequency is hopped over a large signal bandwidth, frequency-hopping also spreads the data signal to a much wider bandwidth. Typically spread spectrum signals are superimposed onto each other within the same signal bandwidth. A spread spectrum receiver can separate each of the distinct signals by separately decoding each spreading sequence. However, since the codes are semi-orthogonal, the users within a cell interfere with each other (intracell interference), and codes that are reused in other cells also cause interference (intercell interference). Both the intracell and intercell interference power is reduced by the spreading gain of the code. Moreover, interference in spread spectrum systems can be further reduced through multiuser detection and interference cancellation.

In the U.S. the standards activities surrounding the second generation of digital cellular systems provoked a raging debate on multiple access for these systems, resulting in several incompatible standards [10, 11, 12]. In particular, there are two standards in the 900 MHz (cellular) frequency band: IS-54, which uses a combination of TDMA and FDMA, and IS-95, which uses semi-orthogonal CDMA [13, 14].
spectrum for digital cellular in the 2 GHz (PCS) frequency band was auctioned off, so service providers could use an existing standard or develop proprietary systems for their purchased spectrum. The end result has been three different digital cellular standards for this frequency band: IS-136 (which is basically the same as IS-54 at a higher frequency), IS-95, and the European digital cellular standard GSM, which uses a combination of TDMA and slow frequency-hopping. The digital cellular standard in Japan is similar to IS-54 and IS-136 but in a different frequency band, and the GSM system in Europe is at a different frequency than the GSM systems in the U.S. This proliferation of incompatible standards in the U.S. and abroad makes it impossible to roam between systems nationwide or globally without using multiple phones (and phone numbers).

All of the second generation digital cellular standards have been enhanced to support high rate packet data services [15]. GSM systems provide data rates of up to 100 Kbps by aggregating all timeslots together for a single user. This enhancement was called GPRS. A more fundamental enhancement, called Enhanced Data Services for GSM Evolution (EDGE), further increases data rates using a high-level modulation format combined with FEC coding. This modulation is more sensitive to fading effects, and EDGE uses adaptive modulation and coding to mitigate this problem. Specifically, EDGE defines six different modulation and coding combinations, each optimized to a different value of received SNR. The received SNR is measured at the receiver and fed back to the transmitter, and the best modulation and coding combination for this SNR value is used. The IS-54 and IS-136 systems currently provide data rates of 40-60 Kbps by aggregating time slots and using high-level modulation. This new TDMA standard is referred to as IS-136HS (high-speed). Many of these time-division systems are moving toward GSM, and their corresponding enhancements to support high speed data. The IS-95 systems support higher data using a time-division technique called high data rate (HDR)[16].

The third generation of cellular phones is based on a wideband CDMA standard developed within the auspices of the International Telecommunications Union (ITU) [15]. The standard, initially called International Mobile Telecommunications 2000 (IMT-2000), provides different data rates depending on mobility and location, from 384 Kbps for pedestrian use to 144 Kbps for vehicular use to 2 Mbps for indoor office use. The 3G standard is incompatible with 2G systems, so service providers must invest in a new infrastructure before they can provide 3G service. The first 3G systems were deployed in Japan, where they have experienced limited success with a somewhat slower growth than expected. One reason that 3G services came out first in Japan is the process of 3G spectrum allocation, which in Japan was awarded without much up-front cost. The 3G spectrum in both Europe and the U.S. is allocated based on auctioning, thereby requiring a huge initial investment for any company wishing to provide 3G service. European companies collectively paid over 100 billion dollars in their 3G spectrum auctions. There has been much controversy over the 3G auction process in Europe, with companies charging that the nature of the auctions caused enormous overbidding and that it will be very difficult if not impossible to reap a profit on this spectrum. A few of the companies have already decided to write off their investment in 3G spectrum and not pursue system buildout. In fact 3G systems have not yet come online in Europe, and it appears that data enhancements to 2G systems may suffice to satisfy user demands. However, the 2G spectrum in Europe is severely overcrowded, so users will either eventually migrate to 3G or regulations will change so that 3G bandwidth can be used for 2G services (which is not currently allowed in Europe). 3G development in the U.S. has lagged far behind that of Europe. The available 3G spectrum in the U.S. in only about half that available in Europe. Due to wrangling about which parts of the spectrum will be used, the spectral auctions have been delayed. However, the U.S. does allow the 1G and 2G spectrum to be used for 3G, and this flexibility may allow a more gradual rollout and investment than the more restrictive 3G requirements in Europe. It appears that delaying 3G in the U.S. will allow U.S. service providers to learn from the mistakes and successes in Europe and Japan.
Efficient cellular system designs are *interference-limited*, i.e., the interference dominates the noise floor since otherwise more users could be added to the system. As a result, any technique to reduce interference in cellular systems leads directly to an increase in system capacity and performance. Some methods for interference reduction in use today or proposed for future systems include cell sectorization \[6\], directional and smart antennas \[19\], multiuser detection \[20\], and dynamic channel and resource allocation \[21, 22\].

1.4.2 Cordless Phones

Cordless telephones first appeared in the late 1970’s and have experienced spectacular growth ever since. Roughly half of the phones in U.S. homes today are cordless. Cordless phones were originally designed to provide a low-cost low-mobility wireless connection to the PSTN, i.e., a short wireless link to replace the cord connecting a telephone base unit and its handset. Since cordless phones compete with wired handsets, their voice quality must be similar: initial cordless phones had poor voice quality and were quickly discarded by users. The first cordless systems allowed only one phone handset to connect to each base unit, and coverage was limited to a few rooms of a house or office. This is still the main premise behind cordless telephones in the U.S. today, although these phones now use digital technology instead of analog. In Europe and the Far East digital cordless phone systems have evolved to provide coverage over much wider areas, both in and away from home, and are similar in many ways to today’s cellular telephone systems.

Digital cordless phone systems in the U.S. today consist of a wireless handset connected to a single base unit which in turn is connected to the PSTN. These cordless phones impose no added complexity on the telephone network, since the cordless base unit acts just like a wireline telephone for networking purposes. The movement of these cordless handsets is extremely limited: a handset must remain within range of its base unit. There is no coordination with other cordless phone systems, so a high density of these systems in a small area, e.g., an apartment building, can result in significant interference between systems. For this reason cordless phones today have multiple voice channels and scan between these channels to find the one with minimal interference. Spread spectrum cordless phones have also been introduced to reduce interference from other systems and narrowband interference.

In Europe and the Far East the second generation of digital cordless phones (CT-2, for cordless telephone, second generation) have an extended range of use beyond a single residence or office. Within a home these systems operate as conventional cordless phones. To extend the range beyond the home base stations, also called *phone-points* or *telepoints*, are mounted in places where people congregate, like shopping malls, busy streets, train stations, and airports. Cordless phones registered with the telepoint provider can place calls whenever they are in range of a telepoint. Calls cannot be received from the telepoint since the network has no routing support for mobile users, although some newer CT-2 handsets have built-in pagers to compensate for this deficiency. These systems also do not handoff calls if a user moves between different telepoints, so a user must remain within range of the telepoint where his call was initiated for the duration of the call. Telepoint service was introduced twice in the United Kingdom and failed both times, but these systems grew rapidly in Hong Kong and Singapore through the mid 1990’s. This rapid growth deteriorated quickly after the first few years, as cellular phone operators cut prices to compete with telepoint service. The main complaint about telepoint service was the incomplete radio coverage and lack of handoff. Since cellular systems avoid these problems, as long as prices were competitive there was little reason for people to use telepoint services. Most of these services have now disappeared.

Another evolution of the cordless telephone designed primarily for office buildings is the European DECT system. The main function of DECT is to provide local mobility support for users in an in-building
private branch exchange (PBX). In DECT systems base units are mounted throughout a building, and each base station is attached through a controller to the PBX of the building. Handsets communicate to the nearest base station in the building, and calls are handed off as a user walks between base stations. DECT can also ring handsets from the closest base station. The DECT standard also supports telepoint services, although this application has not received much attention, probably due to the failure of CT-2 services. There are currently around 7 million DECT users in Europe, but the standard has not yet spread to other countries.

The most recent advance in cordless telephone system design is the Personal Handyphone System (PHS) in Japan. The PHS system is quite similar to a cellular system, with widespread base station deployment supporting handoff and call routing between base stations. With these capabilities PHS does not suffer from the main limitations of the CT-2 system. Initially PHS systems enjoyed one of the fastest growth rates ever for a new technology. In 1997, two years after its introduction, PHS subscribers peaked at about 7 million users, and has declined slightly since then due mainly to sharp price cutting by cellular providers. The main difference between a PHS system and a cellular system is that PHS cannot support call handoff at vehicle speeds. This deficiency is mainly due to the dynamic channel allocation procedure used in PHS. Dynamic channel allocation greatly increases the number of handsets that can be serviced by a single base station, thereby lowering the system cost, but it also complicates the handoff procedure. It is too soon to tell if PHS systems will go the same route as CT-2. However, it is clear from the recent history of cordless phone systems that to extend the range of these systems beyond the home requires either the same functionality as cellular systems or a significantly reduced cost.

1.4.3 Wireless LANs

Wireless LANs provide high-speed data within a small region, e.g., a campus or small building, as users move from place to place. Wireless devices that access these LANs are typically stationary or moving at pedestrian speeds. Nearly all wireless LANs in the United States use one of the ISM frequency bands. The appeal of these frequency bands, located at 900 MHz, 2.4 GHz, and 5.8 GHz, is that an FCC license is not required to operate in these bands. However, this advantage is a double-edged sword, since many other systems operate in these bands for the same reason, causing a great deal of interference between systems. The FCC mitigates this interference problem by setting a limit on the power per unit bandwidth for ISM-band systems. Wireless LANs can have either a star architecture, with wireless access points or hubs placed throughout the coverage region, or a peer-to-peer architecture, where the wireless terminals self-configure into a network.

Dozens of wireless LAN companies and products appeared in the early 1990’s to capitalize on the “pent-up demand” for high-speed wireless data. These first generation wireless LANs were based on proprietary and incompatible protocols, although most operated in the 900 MHz ISM band using direct sequence spread spectrum with data rates on the order of 1-2 Mbps. Both star and peer-to-peer architectures were used. The lack of standardization for these products led to high development costs, low-volume production, and small markets for each individual product. Of these original products only a handful were even mildly successful. Only one of the first generation wireless LANs, Motorola’s Altair, operated outside the 900 MHz ISM band. This system, operating in the licensed 18 GHz band, had data rates on the order of 6 Mbps. However, performance of Altair was hampered by the high cost of components and the increased path loss at 18 GHz, and Altair was discontinued within a few years of its release.

The second generation of wireless LANs in the United States operate in the 2.4 GHz ISM band. A wireless LAN standard for this frequency band, the IEEE 802.11b standard, was developed to avoid some of the problems with the proprietary first generation systems. The standard specifies frequency hopped spread spectrum with data rates of around 1.6 Mbps (raw data rates of 11 Mbps) and a range
of approximately 500 ft. The network architecture can be either star or peer-to-peer. Many companies have developed products based on the 802.11b standard, and these products are constantly evolving to provide higher data rates and better coverage at very low cost. The market for 802.11b wireless LANs is growing, and computer manufacturers have begun integrating the cards directly into their laptops. Many companies and universities have installed 802.11b base stations throughout their locations, and even local coffee houses are installing these base stations to offer wireless access to customers. Optimism is high that the wireless LAN market is poised to take off (although this prediction has been made every year since the inception of wireless LANs).

Perhaps the main impediment to the ultimate success of the 802.11b wireless LANs is the newest wireless LAN standard, IEEE 802.11a. This wireless LAN operates in the 5 GHz unlicensed band, which has much more spectrum and less interference than the 2.4 GHz band. The 802.11a standard is based on OFDM modulation and provides on the order of 50 Mbps data rates. There was some initial concern that 802.11a systems would be significantly more expensive than 802.11b systems, but in fact they are becoming quite competitive in price.

In Europe wireless LAN development revolves around the HIPERLAN (high performance radio LAN) standards. The first HIPERLAN standard, HIPERLAN Type 1, is similar to the IEEE 802.11a wireless LAN standard and promises data rates of 20 Mbps at a range of 50 meters (150 feet). This system operates in the 5 GHz band. Its network architecture is peer-to-peer, and the channel access mechanism uses a variation of ALOHA with prioritization based on the lifetime of packets. The next generation of HIPERLAN, HIPERLAN Type 2, is still under development, but the goal is to provide data rates on the order of 54 Mbps with a similar range, and also to support access to cellular, ATM, and IP networks. HIPERLAN Type 2 is also supposed to include support for Quality-of-Service (QoS), however it is not yet clear how and to what extent this will be done.

1.4.4 Wide Area Wireless Data Services

Wide area wireless data services provide low rate wireless data to high-mobility users over a very large coverage area. In these systems a given geographical region is serviced by base stations mounted on towers, rooftops, or mountains. The base stations can be connected to a backbone wired network or form a multihop ad hoc network. Initial data rates for these systems were below 10 Kbps but gradually increased to 20 Kbps. There are two main players in wide area wireless data services: Motient and Bell South Mobile Data (formerly RAM Mobile Data). Metricom provided a similar service with a network architecture consisting of a large network of small inexpensive base stations with small coverage areas. The increased efficiency of the small coverage areas allowed for higher data rates in Metricom, 76 Kbps, than in the other wide-area wireless data systems. However, the high infrastructure cost for Metricom eventually forced it into bankruptcy, and the system was shut down. Some of the infrastructure was bought and is operating in a few areas as Ricochet.

The cellular digital packet data (CDPD) system is a wide area wireless data service overlayed on the analog cellular telephone network. CDPD shares the FDMA voice channels of the analog systems, since many of these channels are idle due to the growth of digital cellular. The CDPD service provides packet data transmission at rates of 19.2 Kbps, and is available throughout the U.S. However, since newer generations of cellular systems also provide data services, CDPD will likely be replaced by these newer services.

All of these wireless data services have failed to grow as rapidly or to attract as many subscribers as initially predicted, especially in comparison with the rousing success of wireless voice systems. There is disagreement on why these systems have experienced such anemic growth. Data rates for these systems are clearly low, especially in comparison with their wireline counterparts. Pricing for these services also
remains high. There is a perceived lack of “killer applications” for wireless data: while voice communication on the move seems essential for a large part of the population, most people can wait until they have access to a phone line or wired network for data exchange. This may change with the proliferation of laptop and palmtop computers and the explosive demand for constant Internet access and email exchange. Optimists point to these factors as the drivers for wireless data but, as with wireless LANs, wide area wireless data services have been the pot of gold around the corner for many years yet have so far failed to deliver on these high expectations.

1.4.5 Fixed Wireless Access

Fixed wireless access provides wireless communications between a fixed access point and multiple terminals. These systems were initially proposed to support interactive video service to the home, but the application emphasis has now shifted to providing high speed data access (tens of Mbps) to the Internet, the WWW, and to high speed data networks for both homes and businesses. In the U.S. two frequency bands have been set aside for these systems: part of the 28 GHz spectrum is allocated for local distribution systems (local multipoint distribution systems or LMDS) and a band in the 2 GHz spectrum is allocated for metropolitan distribution systems (multichannel multipoint distribution services or MMDS). LMDS represents a quick means for new service providers to enter the already stiff competition among wireless and wireline broadband service providers. MMDS is a television and telecommunication delivery system with transmission ranges of 30-50 Km. MMDS has the capability to deliver over one hundred digital video TV channels along with telephony and access to emerging interactive services such as the Internet. MMDS will mainly compete with existing cable and satellite systems. Europe is developing a standard similar to MMDS called Hiperaccess.

1.4.6 Paging Systems

Paging systems provide very low rate one-way data services to highly mobile users over a very wide coverage area. Paging systems have experienced steady growth for many years and currently serve about 56 million customers in the United States. However, the popularity of paging systems is declining as cellular systems become cheaper and more ubiquitous. In order to remain competitive paging companies have slashed prices, and few of these companies are currently profitable. To reverse their declining fortunes, a consortium of paging service providers have recently teamed up with Microsoft and Compaq to incorporate paging functionality and Internet access into palmtop computers [2].

Paging systems broadcast a short paging message simultaneously from many tall base stations or satellites transmitting at very high power (hundreds of watts to kilowatts). Systems with terrestrial transmitters are typically localized to a particular geographic area, such as a city or metropolitan region, while geosynchronous satellite transmitters provide national or international coverage. In both types of systems no location management or routing functions are needed, since the paging message is broadcast over the entire coverage area. The high complexity and power of the paging transmitters allows low-complexity, low-power, pocket paging receivers with a long usage time from small and lightweight batteries. In addition, the high transmit power allows paging signals to easily penetrate building walls. Paging service also costs less than cellular service, both for the initial device and for the monthly usage charge, although this price advantage has declined considerably in recent years. The low cost, small and lightweight handsets, long battery life, and ability of paging devices to work almost anywhere indoors or outdoors are the main reasons for their appeal.

Some paging services today offer rudimentary (1 bit) answer-back capabilities from the handheld paging device. However, the requirement for two-way communication destroys the asymmetrical link

17
advantage so well exploited in paging system design. A paging handset with answer-back capability requires a modulator and transmitter with sufficient power to reach the distant base station. These requirements significantly increase the size and weight and reduce the usage time of the handheld pager. This is especially true for paging systems with satellite base stations, unless terrestrial relays are used.

1.4.7 Satellite Networks

Satellite systems provide voice, data, and broadcast services with widespread, often global, coverage to high-mobility users as well as to fixed sites. Satellite systems have the same basic architecture as cellular systems, except that the cell base-stations are satellites orbiting the earth. Satellites are characterized by their orbit distance from the earth. There are three main types of satellite orbits: low-earth orbit (LEOs) at 500-2000 Kms, medium-earth orbit (MEO) at 10,000 Kms, and geosynchronous orbit (GEO) at 35,800 Kms. A geosynchronous satellite has a large coverage area that is stationary over time, since the earth and satellite orbits are synchronous. Satellites with lower orbits have smaller coverage areas, and these coverage areas change over time so that satellite handoff is needed for stationary users or fixed point service.

Since geosynchronous satellites have such large coverage areas just a handful of satellites are needed for global coverage. However, geosynchronous systems have several disadvantages for two-way communication. It takes a great deal of power to reach these satellites, so handsets are typically large and bulky. In addition, there is a large round-trip propagation delay: this delay is quite noticeable in two-way voice communication. Recall also from Section 1.4.1 that high-capacity cellular systems require small cell sizes. Since geosynchronous satellites have very large cells, these systems have small capacity, high cost, and low data rates, less than 10 Kbps. The main geosynchronous systems in operation today are the global Inmarsat system, MSAT in North America, Mobikesat in Australia, and EMS and LLM in Europe.

The trend in current satellite systems is to use the lower LEO orbits so that lightweight handheld devices can communicate with the satellites and propagation delay does not degrade voice quality. The best known of these new LEO systems are Globalstar and Teledesic. Globalstar provides voice and data services to globally-roaming mobile users at data rates under 10 Kbps. The system requires roughly 50 satellites to maintain global coverage. Teledesic uses 288 satellites to provide global coverage to fixed-point users at data rates up to 2 Mbps. Teledesic is set to be deployed in 2005. The cell size for each satellite in a LEO system is much larger than terrestrial macrocells or microcells, with the corresponding decrease in capacity associated with large cells. Cost of these satellites, to build, to launch, and to maintain, is also much higher than that of terrestrial base stations, so these new LEO systems are unlikely to be cost-competitive with terrestrial cellular and wireless data services. Although these LEO systems can certainly complement these terrestrial systems in low-population areas, and are also appealing to travelers desiring just one handset and phone number for global roaming, it remains to be seen if there are enough such users willing to pay the high cost of satellite services to make these systems economically viable. In fact, Iridium, the largest and best-known of the LEO systems, was forced into bankruptcy and disbanded.

1.4.8 Bluetooth

Bluetooth is a cable-replacement RF technology for short range connections between wireless devices. The Bluetooth standard is based on a tiny microchip incorporating a radio transceiver that is built into digital devices. The transceiver takes the place of a connecting cable for devices such as cell phones, laptop and palmtop computers, portable printers and projectors, and network access points. Bluetooth is mainly for short range communications, e.g. from a laptop to a nearby printer or from a cell phone to a wireless headset. Its normal range of operation is 10 m (at 1 mW transmit power), and this range
can be increased to 100 m by increasing the transmit power to 100 mW. The system operates in the unregulated 2.4 GHz frequency band, hence it can be used worldwide without any licensing issues. The Bluetooth standard provides 1 data channel at 721 Kbps and up to three voice channels at 56 Kbps for an aggregate bit rate of 1 Mbps. Networking is done via a packet switching protocol based on frequency hopping at 1600 hops per second.

The Bluetooth standard was developed jointly by 3 Com, Ericsson, Intel, IBM, Lucent, Microsoft, Motorola, Nokia, and Toshiba. The standard has now been adopted by over 1300 manufacturers, and products compatible with Bluetooth are starting to appear on the market now. Specifically, the following products all use Bluetooth technology: a wireless headset for cell phones (Ericsson), a wireless USB or RS232 connector (RTX Telecom, Adayma), wireless PCMCIA cards (IBM), and wireless settop boxes (Eagle Wireless), to name just a few. More details on Bluetooth, including Bluetooth products currently available or under development, can be found at the website http://www.bluetooth.com.

1.4.9 HomeRF

HomeRF is a working group developing an open industry standard for wireless digital communication between PCs, PDAs, intelligent home appliances and consumer electronic devices anywhere in and around the home. The working group was initiated by Intel, HP, Microsoft, Compaq, and IBM. The main component of the HomeRF protocol is its Shared Wireless Access Protocol (SWAP), which operates in the unregulated 2.4 GHz frequency band (same band as Bluetooth).

The SWAP protocol is designed to carry both voice and data traffic and to interoperate with the PSTN and the Internet. The bandwidth sharing is enabled by frequency hopped spread spectrum at 50 hops/sec, however it also supports a TDMA service for delivery of interactive voice and other time-critical services, and a CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) service for high speed packet data. The transmit power for HomeRF is specified at 100 mW which provides a data rate of 1-2 Mbps. However, in August 2000 the FCC okayed a five-fold increase in the HomeRF bandwidth, which will increase data rates to 10 Mbps. The range of HomeRF covers a typical home and backyard. Compaq and Intel released products in the spring of 2000 based on HomeRF in the $100 range, and other products in this price range are expected soon. More details on HomeRF can be found at http://www.homerf.org.

1.4.10 Other Wireless Systems and Applications

Many other commercial systems using wireless technology are on the market today. Remote sensor networks that collect data from unattended sensors and transmit this data back to a central processing location are being used for both indoor (equipment monitoring, climate control) and outdoor (earthquake sensing, remote data collection) applications. Satellite systems that provide vehicle tracking and dispatching (OMNITRACs) are very successful. Satellite navigation systems (the Global Positioning System or GPS) are also widely used for both military and commercial purposes. A wireless system for Digital Audio Broadcasting (DAB) has been available in Europe for quite some time and has recently been introduced in the U.S. as satellite radio. New systems and standards are constantly being developed and introduced, and this trend seems to be accelerating.
1.5 The Wireless Spectrum

1.5.1 Methods for Spectrum Allocation

Most countries have government agencies responsible for allocating and controlling the use of the radio spectrum. In the United States spectrum allocation is controlled by the Federal Communications Commission (FCC) for commercial use and by the Office of Spectral Management (OSM) for military use. The government decides how much spectrum to allocate between commercial and military use. Historically, the FCC allocated spectral blocks for specific uses and assigned licenses to use these blocks to specific groups or companies. For example, in the 1980s the FCC allocated frequencies in the 800 MHz band for analog cellular phone service, and provided spectral licenses to two companies in each geographical area based on a number of criteria. While the FCC still typically allocates spectral blocks for specific purposes, over the last decade they have turned to spectral auctions for assigning licenses in each block to the highest bidder. While some argue that this market-based method is the fairest way for the government to allocate the limited spectral resource, and it provides significant revenue to the government besides, there are others who believe that this mechanism stifles innovation, limits competition, and hurts technology adoption. Specifically, the high cost of spectrum dictates that only large conglomerates can purchase it. Moreover, the large investment required to obtain spectrum delays the ability to invest in infrastructure for system rollout and results in very high initial prices for the end user. The 3G spectral auctions in Europe, in which several companies have already defaulted, have provided fuel to the fire against spectral auctions.

In addition to spectral auctions, the FCC also sets aside specific frequency bands that are free to use according to a specific set of etiquette rules. The rules may correspond to a specific communications standard, power levels, etc. The purpose of these “free bands” is to encourage innovation and low-cost implementation. Two of the most important emerging wireless systems, 802.11b wireless LANs and Bluetooth, co-exist in the free National Information Highway (NIH) band set aside at 2.5 GHz. However, one difficulty with free bands is that they can be killed by their own success: if a given system is widely used in a given band, it will generate much interference to other users colocated in that band. Satellite systems cover large areas spanning many countries and sometimes the globe. For wireless systems that span multiple countries, spectrum is allocated by the International Telecommunications Union Radio Communications group (ITU-R). The standards arm of this body, ITU-T, adopts telecommunication standards for global systems that must interoperate with each other across national boundaries.

1.5.2 Spectrum Allocations for Existing Systems

Most wireless applications reside in the radio spectrum between 30 MHz and 30 GHz. These frequencies are natural for wireless systems since they are not affected by the earth's curvature, require only moderately sized antennas, and can penetrate the ionosphere. Note that the required antenna size for good reception is inversely proportional to the signal frequency, so moving systems to a higher frequency allows for more compact antennas. However, received signal power is proportional to the inverse of frequency squared, so it is harder to cover large distances with higher frequency signals. These tradeoffs will be examined in more detail in later chapters.

As discussed in the previous section, spectrum is allocated either in licensed bands (which the FCC assigns to specific operators) or in unlicensed bands (which can be used by any operator subject to certain operational requirements). The following table shows the licensed spectrum allocated to major commercial wireless systems in the U.S. today.
AM Radio	535-1605 MHz
FM Radio	88-108 MHz
Broadcast TV (Channels 2-6)	54-88 MHz
Broadcast TV (Channels 7-13)	174-216 MHz
Broadcast TV (UHF)	470-806 MHz
3G Broadband Wireless	746-764 MHz, 776-794 MHz
3G Broadband Wireless	1.7-1.85 MHz, 2.5-2.69 MHz
Analog and 2G Digital Cellular Phones	806-902 MHz
Personal Communications Service (2G Cell Phones)	1.85-1.99 GHz
Wireless Communications Service	2.305-2.32 GHz, 2.345-2.36 GHz
Satellite Digital Radio	2.32-2.325 GHz
Multichannel Multipoint Distribution Service (MMDS)	2.15-2.68 GHz
Digital Broadcast Satellite (Satellite TV)	12.2-12.7 GHz
Digital Electronic Message Service (DEMS)	24.25-24.45 GHz, 25.05-25.25 GHz
Teledesic	18.8-19.3 GHz, 28.6-29.1 GHz
Local Multipoint Distribution Service (LMDS)	27.5-29.5 GHz, 31-31.3 GHz
Fixed Wireless Services	38.6-40 GHz

Note that digital TV is slated for the same bands as broadcast TV. By 2006 all broadcasters are expected to switch from analog to digital transmission. Also, the 3G broadband wireless spectrum is currently allocated to UHF TV stations 60-69, but is slated to be reallocated for 3G. Both analog and 2G digital cellular services occupy the same cellular band at 800 MHz, and the cellular service providers decide how much of the band to allocate between digital and analog service.

Unlicensed spectrum is allocated by the governing body within a given country. Often countries try to match their frequency allocation for unlicensed use so that technology developed for that spectrum is compatible worldwide. The following table shows the unlicensed spectrum allocations in the U.S.

ISM Band I (Cordless phones, 1G WLANs)	902-928 MHz
ISM Band II (Bluetooth, 802.11b WLANs)	2.4-2.4835 GHz
ISM Band III (Wireless PBX)	5.725-5.85 GHz
NII Band I (Indoor systems, 802.11a WLANs)	5.15-5.25 GHz
NII Band II (short outdoor and campus applications)	5.25-5.35 GHz
NII Band III (long outdoor and point-to-point links)	5.725-5.825 GHz

ISM Band I has licensed users transmitting at high power that interfere with the unlicensed users. Therefore, the requirements for unlicensed use of this band is highly restrictive and performance is somewhat poor. The NII bands were set aside recently to provide a total of 300 MHz of spectrum with very few restrictions. It is expected that many new applications will take advantage of this large amount of unlicensed spectrum.

1.6 Standards

Communication systems that interact with each other require standardization. Standards are typically decided on by national or international committees: in the U.S. the TIA plays this role. These committees adopt standards that are developed by other organizations. The IEEE is the major player for standards...
development in the United States, while ETSI plays this role in Europe. Both groups follow a lengthy process for standards development which entails input from companies and other interested parties, and a long and detailed review process. The standards process is a large time investment, but companies participate since if they can incorporate their ideas into the standard, this gives them an advantage in developing the resulting system. In general standards do not include all the details on all aspects of the system design. This allows companies to innovate and differentiate their products from other standardized systems. The main goal of standardization is for systems to interoperate with other systems following the same standard.

In addition to insuring interoperability, standards also enable economies of scale and pressure prices lower. For example, wireless LANs typically operate in the unlicensed spectral bands, so they are not required to follow a specific standard. The first generation of wireless LANs were not standardized, so specialized components were needed for many systems, leading to excessively high cost which, coupled with poor performance, led to very limited adoption. This experience led to a strong push to standardize the next wireless LAN generation, which resulted in the highly successful IEEE 802.11b standard widely used today. Future generations of wireless LANs are expected to be standardized, including the now emerging IEEE 802.11a standard in the 5 GHz band.

There are, of course, disadvantages to standardization. The standards process is not perfect, as company participants often have their own agenda which does not always coincide with the best technology or best interests of the consumers. In addition, the standards process must be completed at some point, after which time it becomes more difficult to add new innovations and improvements to an existing standard. Finally, the standards process can become very politicized. This happened with the second generation of cellular phones in the U.S., which ultimately led to the adoption of two different standards, a bit of an oxymoron. The resulting delays and technology split put the U.S. well behind Europe in the development of 2nd generation cellular systems. Despite its flaws, standardization is clearly a necessary and often beneficial component of wireless system design and operation. However, it would benefit everyone in the wireless technology industry if some of the disadvantages in the standardization process could be mitigated.
Bibliography

Chapter 2

Path Loss and Shadowing

The wireless radio channel poses a severe challenge as a medium for reliable high-speed communication. It is not only susceptible to noise, interference, blockage, and multipath, but these channel impediments change over time in unpredictable ways due to user movement. In this chapter we will characterize the variation in received signal power due to signal propagation and signal blockage. The variation due to signal propagation changes over large distances (100-1000 meters), whereas variation due to blockage changes over distances proportional to the length of the obstructing object (10-100 meters in outdoor environments and less in indoor environments). Chapter 3 will deal with variation due to the time-varying channel impulse response resulting from a large number of multipath components. This variation changes over very short distances, on the order of the signal wavelength.

We focus on radio waves in the UHF-SHF bands, from .3-3GHz and 3-30GHz, respectively. Most terrestrial mobile communication systems use the UHF band, while satellite systems typically operate in the SHF band, since these signals penetrate the ionosphere with little or no effort. The analysis of radio wave propagation for terrestrial systems in the UHF band must take into account reflection and scattering from natural and man-made objects. SHF propagation to a satellite must consider attenuation from buildings, rain, and other atmospheric effects. Since the optimal antenna size is proportional to the signal wavelength, mounting an antenna on a hand-held communication device is typically not an issue at these frequencies, although antenna arrays for the UHF band do present a problem.

After a brief introduction, we first describe the simplest model for signal propagation: free space loss. A signal propagating between two points with no attenuation or reflection follows the free space propagation law. We then describe ray tracing propagation models. These models are used to approximate wave propagation according to Maxwell's equations, and are accurate models when the number of multipath components is small. Ray tracing models depend heavily on the geometry and dielectric properties of the region through which the signal propagates. We therefore also present some simple generic models with a few parameters which are commonly used in practice for system analysis and "back-of-the-envelope" system design. When the number of multipath components is large, or the geometry and dielectric properties of the propagation environment are unknown, statistical models must be used. These statistical multipath models will be described in Chapter 3.

While this chapter gives a brief overview of channel models for path loss and shadowing, comprehensive coverage of channel and propagation models at different frequencies of interest merits a book in its own right. More details on channel models for current systems can be found in [32].
2.1 Introduction to Mobile Radio Propagation

The initial understanding of mobile radio propagation goes back to the early work of Hertz in the 1880’s, which showed that electromagnetic wave propagation was possible in free space. This pioneering work initiated the field of radio communications, with the first fixed-point radio system built in 1895 by the entrepreneur Marconi. By 1897 Marconi had managed to send a radio signal from the Isle of Wight to a tugboat 18 miles away: the first example of a mobile radio system.

Most electromagnetic waves propagate through environments where they are reflected, scattered, and diffracted by walls, terrain, buildings, and other objects. The ultimate details of this propagation can be obtained by solving Maxwell’s equations with boundary conditions that express the physical characteristics of these obstructing objects. This requires the calculation of the Radar Cross Section (RCS) of large and complex structures. Since these calculations are difficult, and many times the necessary parameters are not available, approximations have been developed to characterize signal propagation without resorting to Maxwell’s equations.

The most common approximations use ray-tracing techniques. These techniques approximate the propagation of electromagnetic waves by representing the wavefronts as simple particles: the model determines the reflection and refraction effects on the wavefront but ignores the more complex scattering phenomenon predicted by Maxwell’s coupled differential equations. The simplest ray-tracing model is the two-path model, which accurately describes signal propagation when there is one direct path between the transmitter and receiver and one reflected path. The reflected path typically bounces off the ground, and the two-path model is a good approximation for propagation along highways, rural roads, and over water. We next consider more complex models with additional reflected waves, which may also be scattered or diffracted.

Often the complexity and variability of the radio channel makes it difficult to obtain an accurate deterministic channel model. For these cases statistical models are often used. An example of a statistical model is the log-normal fading distribution derived in Chapter 2.6, which predicts attenuation caused by building obstructions. When propagation depends heavily on the geometry and dielectric properties of the radio environment, statistical models are often too coarse to provide much useful information. This is typically the case for indoor systems, where the propagation characteristics change dramatically depending on whether it is an open factory, cubiced office, or metal machine shop. For these environments computer-aided modeling tools are available to predict signal propagation characteristics [5].

We assume that the transmitted signal is given by

\[s(t) = R \left\{ u(t) e^{j(2\pi f_c t + \phi_0)} \right\}, \]

where \(u(t) \) is a complex baseband signal with bandwidth \(B \) and transmitted power \(P_t \), \(f_c \) is the carrier frequency, and \(\phi_0 \) is an arbitrary initial phase. We will generally suppress the phase term \(e^{j(2\pi f_c t + \phi_0)} \) from the received signal in our analysis below, since it is a constant multiplier of all received signal components, including the line-of-sight path propagating through free space and all reflected, scattered, and diffracted multipath components. In addition to the random phase, the received signal will have a Doppler frequency shift in each of its received signal components equal to \(v \cos \theta / \lambda \), where \(\theta \) is the arrival angle of the signal component, \(v \) is the receiver velocity, and \(\lambda = c / f_c \) is the signal wavelength. We will ignore this Doppler term in the free-space and ray tracing models of this chapter, since for typical urban vehicle speeds (60mph) and frequencies (around 1 GHz), it is less than 70 Hz [2]. However, we will include Doppler effects in Chapter 3 on statistical fading models. For simplicity, in this chapter we will also assume that the baseband signal \(u(t) \) is real, since this will not affect our path loss model and will simplify the equations.
2.2 Free-Space Loss

Consider a signal transmitted through free space to a receiver located at distance \(d \) from the transmitter. This signal is often called the line-of-sight (LOS) or direct-path signal, since there are no obstructions between the transmitter and receiver and the signal follows a direct path without reflection between the two. The received signal is determined from the free-space propagation loss formula:

\[
r(t) = \Re \left\{ u(t) e^{j(2\pi f_d t + \phi_0)} \right\} \frac{\lambda \sqrt{G_t} e^{j(2\pi d/\lambda)}}{4\pi d} = u(t) \frac{\lambda \sqrt{G_t} e^{j(2\pi d/\lambda)}}{4\pi d} \cos(2\pi f_d t + \phi_0),
\]

where \(\sqrt{G_t} \) is the product of the transmit and receive antenna field radiation patterns in the LOS direction.

The average received signal power is \(P_r = \overline{|r(t)|^2} \), where \(r^* \) denotes the complex conjugate of \(r \). The ratio of receive to transmit signal power is thus given by

\[
\frac{P_r}{P_t} = \left[\frac{\sqrt{G_t} \lambda}{4\pi d} \right]^2
\]

Thus, the received signal power falls off proportional to the square of the distance \(d \) between the transmit and receive antennas. We will see in the next section that for other signal propagation models, the received signal power falls off more quickly relative to this distance.

2.3 Ray Tracing

In a typical urban environment, a radio signal transmitted from a fixed source to a mobile receiver experiences extreme variation in both amplitude and phase. This variation is due to multipath, which arises when the transmitted signal is reflected, diffracted, or scattered by an object. These additional copies of the transmitted signal can be attenuated in power, delayed in time, and shifted in phase and/or frequency from the line-of-sight (LOS) signal path. For narrowband channels, constructive and destructive interference of the multiple paths causes the received signal amplitude to vary. We will examine these variations as a function of distance between the transmitter and receiver, and in the asymptotic limit as this distance becomes large.

We assume that the distances of our analysis are small enough so that propagation is not affected by the earth’s curvature [2]. If the transmitter, receiver, and reflectors are all immobile then the constructive and destructive interference of the multiple paths, and their delays relative to the LOS path, are fixed. However, if the source or receiver are moving, then the characteristics of the multiple paths vary with time. These time variations are deterministic when the number, location, and characteristics of the reflectors are known, otherwise, statistical models must be used.

We first describe propagation models which assume a finite number of reflectors with known location and dielectric properties. The details of the multipath propagation in this case can be solved using Maxwell’s equations with appropriate boundary conditions. However, the computational complexity of this solution makes it impractical as a general modeling tool [3]. Ray-tracing techniques approximate the propagation of electromagnetic waves by representing the wavefronts as simple particles, where the reflection and refraction effects on the wavefront are determined while the more complex scattering phenomenon predicted by Maxwell’s equations are ignored. The error of the ray tracing approximation is smallest when the receiver is many wavelengths from the nearest scatterer, and all the scatterers are large relative to a wavelength and fairly smooth, as with window reflections. Comparison of the ray tracing method with empirical data shows it to be a good model for signal propagation in rural areas, or along city streets where both the transmitter and receiver are close to the ground [4].
The most general ray tracing model includes all attenuated, diffracted, and scattered multipath components. This model uses all of the geometrical and dielectric properties of the buildings surrounding the transmitter and receiver, and therefore the model almost always requires on-site empirical measurements. Computer programs based on this model, which use a local building database for calculations, are currently available [5]; these programs are now widely used for system planning in both indoor and outdoor environments.

If the number of reflectors is large or the reflector surfaces are not smooth then we can use statistical approximations based on the law of large numbers. We will discuss these statistical fading models for both narrowband and wideband signals in Chapter 3. Hybrid models, which combine ray tracing and statistical fading, can also be found in the literature [6, 7], however we will not describe them here.

The following sections describe several ray tracing models of increasing complexity. We start with a simple two-path model, which predicts signal variation resulting from a ground reflection interfering with the LOS path. This model characterizes signal propagation in isolated areas with few reflectors, such as rural roads or highways. We then present a ten-ray reflection model, which predicts the variation of a signal propagating along a straight, building-lined street with the transmit and receive antennas placed below the skyline. Finally, we describe a general model which predicts signal propagation for any building and transceiver configuration. The two-ray model only requires information about the antenna heights, while the ten-ray model requires antenna height and street width information, and the general model requires these parameters as well as detailed information about the geometry and dielectric properties of the surrounding buildings.

2.3.1 Two-Path Model

The two-path model is used when a single ground reflection dominates the multipath effect, as illustrated in Figure 2.1. The received signal consists of two components: the direct or LOS component, which is just the transmitted signal propagating through free space, and a reflected component, which is the transmitted signal reflected off the ground.

![Two-Path Model](image)

Figure 2.1: Two-Path Model.

The received LOS component is given by the free-space propagation loss formula (2.2). The reflected ray is shown in Figure 2.1 by the segments \(r \) and \(r' \). If we ignore the effect of surface wave attenuation\(^1\) then, by superposition, the received signal for the two-path model is

\[
r_{\text{2-path}}(t) = \frac{\lambda}{4\pi} \left[\sqrt{G_r}u(t)e^{j(2\pi t/\lambda)} \frac{l}{l} + \frac{R\sqrt{G_r}u(t-\tau)e^{j2\pi(r+r')/\lambda}}{r+r'} \cos(2\pi f_0 t + \phi_0) \right]
\]

where \(\tau = (r+r'-l)/c \) is the time delay of the ground reflection relative to the LOS component, \(R \) is the ground reflection coefficient, and \(G_r \) is the product of the transmit and receive antenna field radiation

\(^1\)This is a valid approximation for antennas located more than a few wavelengths from the ground.
patterns corresponding to rays r and r', respectively. If the transmitted signal is narrowband relative to the time delay ($\tau << B_t^{-1}$) then $u(t) \approx u(t - \tau)$. Thus, the received power of the two-path model for narrowband transmission is

$$P_r = P_t \left[\frac{\lambda}{4\pi} \right]^2 \rho \left[\frac{G_t}{l} + \frac{R \sqrt{G_r e^{j\Delta\phi}}}{r + r'} \right]^2,$$

where $\Delta\phi$ is the phase difference between the two received signal components. If d denotes the horizontal separation of the antennas, h_t denotes the transmitter height, and h_r denotes the receiver height, then this phase difference is given by

$$\Delta\phi = \frac{2\pi(r' + r - l)}{\lambda} = \frac{2\pi d}{\lambda} \left[\left(\frac{h_t + h_r}{d} \right)^2 + 1 \right]^{1/2} - \frac{2\pi d}{\lambda} \left[\left(\frac{h_t - h_r}{d} \right)^2 + 1 \right]^{1/2}.$$

Equation (2.5) has been shown to agree very closely with empirical data [8]. The delay spread of the two-path model is just the excess delay of the ground reflection: $(r + r' - l)/c$.

The ground reflection coefficient is given by [2, 9]

$$R = \frac{\sin \theta - Z}{\sin \theta + Z},$$

where

$$Z = \left\{ \begin{array}{ll} \sqrt{\epsilon_r - \cos^2 \theta}/\epsilon_r & \text{for vertical polarization} \\ \sqrt{\epsilon_r - \cos^2 \theta} & \text{for horizontal polarization} \end{array} \right.,$$

and ϵ_r is the dielectric constant of the ground, which for earth or road surfaces is approximately that of a pure dielectric ($\epsilon_r = 15$).

From (2.6), if d is sufficiently large then $r + r' - l \approx 2h_th_r/d$, and thus

$$\Delta\phi \approx 4\pi h_t h_r/\lambda d.$$

For asymptotically large d, $r + r' \approx l \approx d$, $\theta \approx 0$, $G_t \approx G_r$, and $R \approx -1$. Substituting these approximations into (2.5) we see that, in this asymptotic limit, the received signal power is approximately

$$P_r \approx \left[\frac{\lambda \sqrt{G_t}}{4\pi d} \right]^2 \rho \left[\frac{4\pi h_t h_r}{\lambda d} \right]^2 P_t = \left[\frac{\sqrt{G_t} h_t h_r}{d^2} \right]^2 P_t.$$

Thus, in the asymptotic limit of large d, the received power falls off inversely with the fourth power of d. In [8], plots of (2.5) as a function of distance illustrate this asymptotic limit; up to a certain critical distance d_c, the wave experiences constructive and destructive interference of the two rays, resulting in a wave pattern with a sequence of maxima and minima. At distance d_c, the final maximum is reached, after which the signal power falls off proportionally to d^{-4}. An approximation for d_c can be obtained by setting $\Delta\phi$ to π in (2.9), obtaining $d_c = 4h_t h_r/\lambda$. The critical distance is used in the design of cellular systems to determine optimal cell size.

If we average out the local maxima and minima in (2.5), the resulting average power loss can be approximated by dividing the power loss curve into two regions. For $d < d_c$, the average power falloff with distance corresponds to free space loss. For $d > d_c$, the falloff with distance is approximated by the fourth-power law in (2.10). These approximations are captured with the following simplified model for average received power [10, 22], which assumes that $G_t \approx G_r$:

$$P_r = P_t G_t \frac{1}{I(d)},$$

(2.11)
where

\[
L(d) = \left[\frac{d}{d_0} \right]^2 \left[1 + \left(\frac{d}{d_c} \right)^{(m-2)q} \right]
\]

(2.12)

is a linear approximation for the power falloff. For this approximation, \(m \triangleq 4 \) is the exponent of the power falloff in the asymptotic limit of large \(d \), \(d_0 \) is an empirical constant that reflects the constructive addition of the two paths before the transition region, and \(q \) is a parameter that determines the smoothness of the path loss at the transition region close to \(d_c \).

2.3.2 Dielectric Canyon (Ten-Ray Model)

We now examine a model for urban area transmissions developed by Amitay [4]. This model assumes rectilinear streets\(^2\) with buildings along both sides of the street and transmitter and receiver antenna heights that are well below the tops of the buildings. The building-lined streets act as a dielectric canyon to the propagating signal. Theoretically, an infinite number of rays can be reflected off the building fronts to arrive at the receiver; in addition, rays may also be back-reflected from buildings behind the transmitter or receiver. However, since some of the signal energy is dissipated with each reflection, signal paths corresponding to more than three reflections can generally be ignored. When the street layout is relatively straight, back reflections are usually negligible also. Experimental data shows that a model of ten reflection rays closely approximates signal propagation through the dielectric canyon [4]. The ten rays incorporate all paths with one, two, or three reflections: specifically, there is the LOS, the ground-reflected (GR), the single-wall reflected (SW), the double-wall reflected (DW), the triple-wall (TW) reflected, the wall-ground (WG) reflected and the ground-wall (GW) reflected paths. There are two of each type of wall-reflected path, one for each side of the street. An overhead view of the ten ray model is shown in Figure 2.2.

![Ten-Ray Model](image)

Figure 2.2: Ten-Ray Model.

For the ten-ray model, the received signal is given by

\[
\tau_{\text{10-ray}}(t) = \frac{\lambda}{4\pi} \left[\frac{\sqrt{G_t u(t) e^{j(2\pi l)/\lambda}}}{l} + \sum_{i=1}^{9} \frac{R_i \sqrt{G_{ri} u(t - \tau_i) e^{j(2\pi r_i)/\lambda}}}{r_i} \right],
\]

(2.13)

where \(r_i \) denotes the path length of the \(i \)th reflected ray, \(\tau_i = (r_i - l)/c \), and \(G_{ri} \) is the product of the transmit and receive antenna gains corresponding to the \(i \)th ray. For each reflection path, the coefficient \(R_i \) is either a single reflection coefficient given by (2.7) or, if the path corresponds to multiple reflections, the product of the reflection coefficients corresponding to each reflection. The dielectric constants used

\(^2\)A rectilinear city is flat, with linear streets that intersect at 90° angles, as in midtown Manhattan.
in (2.7) are approximately the same as the ground dielectric, so \(\epsilon_r = 15 \) is used for all the calculations of \(R_i \). If we again assume that \(u(t) \approx u(t - \tau_i) \) for all \(i \), then the received power corresponding to (2.13) is

\[
P_r = P_t \left[\frac{\lambda}{4\pi} \right]^2 \left[\frac{\sqrt{G_r}}{l} + \sum_{i=1}^{9} \frac{R_i \sqrt{G_r l} e^{i\Delta\phi_i}}{r_i} \right]^2,
\]

where \(\Delta\phi_i = 2\pi (r_i - l) / \lambda \). The delay spread for this model is \(\max_i [(r_i - l) / c] \).

Power falloff with distance in both the ten-ray model (2.14) and urban empirical data [8, 23, 24] for transmit antennas both above and below the building skyline is typically proportional to \(d^{-2} \), even at relatively large distances. Moreover, this falloff exponent is relatively insensitive to the transmitter height. This falloff with distance squared is due to the dominance of the multipath rays which decay as \(d^{-2} \), over the combination of the LOS and ground-reflected rays (the two-path model), which decays as \(d^{-4} \). Other empirical studies [10, 25, 26] have obtained power falloff with distance proportional to \(d^{-\gamma} \), where \(\gamma \) lies anywhere between two and six.

2.3.3 General Ray Tracing

General Ray Tracing (GRT) can be used to predict field strength and delay spread for any building configuration and antenna placement [5, 12, 13]. For this model, the building database (height, location, and dielectric properties) and the transmitter and receiver locations relative to the buildings must be specified exactly. Since this information is site-specific, the GRT model is not used to obtain general theories about system performance and layout; rather, it explains the basic mechanism of urban propagation, and can be used to obtain delay and signal strength information for a particular transmitter and receiver configuration.

The GRT method uses geometrical optics to trace the propagation of the LOS and reflected signal components, as well as signal components from building diffraction and diffuse scattering. There is no limit to the number of multipath components at a given receiver location: the strength of each component is derived explicitly based on the building locations and dielectric properties. In general, the LOS and reflected paths provide the dominant components of the received signal, since diffraction and scattering losses are high. However, in regions close to scattering or diffracting surfaces, which are typically blocked from the LOS and reflecting rays, these other multipath components may dominate.

The propagation model for direct and reflected paths was outlined in the previous section. Wedge diffraction provides an accurate model for the mechanism by which signals are diffracted around street corners [13, 14, 15], although the knife-edge diffraction model is sometimes preferred for its simplicity [2, 9]. The geometry of wedge diffraction is shown in Figure 2.3. The geometrical theory of diffraction (GTD) yields the following formula for the received diffracted signal:

\[
r(t) = \frac{\lambda}{4\pi} u(t) D \frac{\sqrt{G_d} e^{j(2\pi(d + d'))/\lambda}}{d'} \sqrt{\frac{d'}{d(d' + d)}} \cos(2\pi f_d t + \phi_0),
\]

where \(\sqrt{G_d} \) is the antenna gain, and \(D \) represents the diffraction coefficient, which depends on the signal polarization, the wedge angle, and the angles of incidence and diffraction (\(\phi \) and \(\phi' \)). Theoretical and heuristic expressions for \(D \) can be found in [15] and [14], respectively. The latter reference obtains numerical results for the diffraction coefficient, yielding losses that exceed 100 dB for some incident angles. Calculation of the diffraction coefficient generally requires a computer, although simple approximations have also been derived [16].

In addition to the wedge-diffracted ray, there may also be multiple diffracted rays, or rays that are both reflected and diffracted. Models exist for including all possible permutations of reflection and
diffraction [16, 17]; however, the attenuation of the corresponding signal components is generally so large that these components are negligible relative to the noise.

\[r(t) = u(t) \frac{\lambda \sqrt{G_s} e^{j(2\pi s'/d)}}{4\pi s'd'} \cos(2\pi f_c t + \phi_0), \]
\[(2.16) \]

where \(\sigma \) is the radar cross section of the scattering object, and \(\sqrt{G_s} \) is the antenna gain. The value of \(\sigma \) depends on the roughness, size, and shape of the scattering object. Empirical values of \(\sigma \) were determined in [19] for different buildings in several cities.

The total received electric field is determined from the superposition of all the components due to the multiple paths. Thus, if we have a LOS ray, \(N_r \) reflected waves, \(N_d \) diffracted rays, and \(N_s \) diffusely scattered rays, the total received signal is

\[
\begin{align*}
 r_{\text{total}}(t) &= \left[\frac{\lambda}{4\pi} \right] \sqrt{G_s} u(t) e^{j(2\pi t)/\lambda} \frac{1}{l} + \sum_{i=1}^{N_r} \frac{R_i \sqrt{G_{r_i}} u(t - \tau_i) e^{j(2\pi \tau_i/\lambda)}}{r_i} \\
 &+ \sum_{i=1}^{N_d} \frac{D_i \sqrt{G_{d_i}} u(t - \tau_i) e^{j(2\pi (d_i + d'_i)/\lambda)}}{d'_i} \sqrt{\frac{d'_i}{d_i (d'_i + d_i)}} \\
 &+ \sum_{i=1}^{N_s} \frac{\sigma_i \sqrt{G_{s_i}} u(t - \tau_i) e^{j(2\pi (s_i + s'_i)/\lambda)}}{s'_i} \sqrt{\frac{s'_i}{s_i (s'_i + s_i)}} \cos(2\pi f_c t + \phi_0),
\end{align*}
\]

where \(\tau_i \) is the time delay of the given multipath component. The corresponding received power is

\[
P_{\text{total}} = E|r_{\text{total}}(t)|^2.
\]
Any of these multipath components may have an additional attenuation factor if its propagation path is blocked by buildings or other objects. In this case, the attenuation factor of the obstructing object multiplies the component's path loss term in (2.17). This attenuation loss will vary widely, depending on the material and depth of the object. An attenuation loss of 12dB is commonly used as an average of empirical measurements [20].

2.4 Empirical Models

Most mobile communication systems operate in complex propagation environments that cannot be accurately modeled by free-space path loss or ray tracing. A number of path loss models have been developed over the years to predict path loss in typical operating environments such as cities and suburban areas. These models are mainly based on empirical measurements in a given frequency range and geographical area. However, application of the models are not restricted to the frequencies or geographical areas on which the models are based, which makes their accuracy in this broader context somewhat questionable. Nevertheless, many of the cellular system standards use these models as a basis for performance analysis.

2.4.1 Piecewise Linear Models

A common method for modeling path loss is a piecewise linear model to approximate the dB attenuation versus log distance. This approximation is illustrated in Figure 2.5, where the dots represent hypothetical empirical measurements and the piecewise linear model represents an approximation to these measurements. The model will typically be obtained from empirical measurements and then applied to other similar environments. A piecewise linear model with N segments must specify $N - 1$ breakpoints d_1, \ldots, d_{N-1} and the slopes corresponding to each segment s_1, \ldots, s_N. The two-path model is a special case of a piecewise linear model, with one breakpoint at critical distance $\log(4h_t h_r/\lambda)$ and slope $s_1 = 20$ and $s_2 = 40$. Different methods can be used to determine the number and location of breakpoints to be used in the model. Once these are fixed, the slopes corresponding to each segment can be obtained by linear regression. The piecewise linear model has been used in [21] to model path loss inside buildings.

![Figure 2.5: Piecewise Linear Model for Path Loss.](image)

2.4.2 Okumura's Model

One of the most common models for signal prediction in urban areas is Okumura’s model [28]. This model is applicable over distances of 1-100 Km and in the frequency range of 150-1920 MHz (although it is typically extrapolated up to 3 GHz). Okumura used extensive measurements of base station to mobile
signal attenuation to develop a set of curves giving median attenuation relative to free space of signal propagation in irregular terrain. The base station heights for these measurements were 30-100 m, which is higher than typical base stations today. The path loss formula of Okumura is given by

$$L_{50}(dB) = L_f + A_{mu}(f,d) - G(h_{te}) - G(h_{re}) - G_{AREA}$$

(2.18)

where d is the distance between transmitter and receiver, L_{50} is the median (50th percentile) value of propagation path loss, L_f is free space loss, A_{mu} is the median attenuation relative to free space, $G(h_{te})$ is the base station antenna height gain factor, $G(h_{re})$ is the mobile antenna height gain factor, and G_{AREA} is the gain due to the type of environment. The values of A_{mu} and G_{AREA} are obtained from Okumura’s empirical plots [28, 5]. Okumura derived empirical formulas for $G(h_{te})$ and $G(h_{re})$ as

$$G(h_{te}) = 20 \log(h_{te}/200), \quad 10m < h_{te} < 1000m$$

(2.19)

$$G(h_{re}) = \begin{cases}
10 \log(h_{re}/3) & h_{re} < 3m \\
20 \log(h_{re}/3) & 3m < h_{re} < 10m
\end{cases}$$

(2.20)

Correction factors related to terrain are also developed in [28] that improve the model accuracy. Okumura’s model typically results in 10-14 dB standard deviation between path loss predicted by the model and actual measurements in urban and suburban cellular systems.

2.4.3 Hata Model

The Hata model [27] is an empirical formulation of the graphical path loss data provided by Okumura and is valid over roughly the same range of frequencies. This empirical model simplifies calculation of path loss since it is a closed-form formula and is not based on empirical curves for the different parameters. The standard formula for median path loss in urban areas under the Hata model is

$$L_{50,urban}(dB) = 69.55 + 16 \log(f_c) - 13.83 \log(h_{te}) - a(h_{re}) + (44.9 - 6.55 \log(h_{te})) \log(d).$$

(2.21)

The parameters in this model are the same as under the Okumura model, and $a(h_{re})$ is a correction factor for the mobile antenna height based on the size of the coverage area [27, 5]. Corrections to the urban model are made for suburban and rural propagation, so that these models are, respectively,

$$L_{50,suburban}(dB) = L_{50,urban}(dB) - 2[\log(f_c/28)]^2 - 5.4$$

(2.22)

and

$$L_{50,rural}(dB) = L_{50,urban}(dB) - 4.78[\log(f_c)]^2 - 18.33 \log(f_c) - 40.98.$$

(2.23)

Hata’s model does not provide for any path specific correction factors, as is available in the Okumura model. The Hata model well-approximates the Okumura model for distances $d > 1$ Km. Thus, it is a good model for first generation cellular systems, but does not model propagation well in current cellular systems with smaller cell sizes.

2.4.4 COST231 Extension to Hata Model

The Hata model was extended by the European cooperative for scientific and technical research (EURO-COST) to 2 GHz as follows [29]:

$$L_{50,urban}(dB) = 46.3 + 33.9 \log(f_c) - 13.82 \log(h_{te}) - a(h_{re}) + (44.9 - 6.55 \log(h_{te}) \log_{10}(d)) + C_M,$$

(2.24)

where $a(h_{re})$ is the same correction factor as before and $C_M = 0$ dB for medium sized cities and suburbs; $C_M = 3$ dB for metropolitan areas. This model is referred to as the COST-231 extension to the Hata model, and is restricted to the following range of parameters: $1.5\text{GHz} < f_c < 2$ GHz, $30m < h_{te} < 200m$, $1m < h_{re} < 10m$, 1Km $< d < 20$ Km.
2.4.5 Walisch/Bertoni Model

The COST extension to the Hata model does not consider the impact of diffraction from rooftops and buildings. A model for these effects was developed by Walisch and Bertoni \cite{33}. This model uses diffraction to predict average signal strength at street level. The model considers the path loss to be the product of three factors:

\[L = P_0Q^2P_1, \]

(2.25)

where \(P_0 \) is the free space path loss for omnidirectional antennas, \(Q^2 \) reflects the signal power reduction due to buildings that block the receiver at street level, and \(P_1 \) is based on the signal loss from the rooftop to the street due to diffraction. The model has been adopted for the IMT-2000 standard.

Other commonly used empirical models for path loss include the Longley-Rice model, the Durkin model, and the Feuerstein model. Details of these models, as well as empirically-based models for path loss in indoor environments, can be found in \cite{5}.

2.5 Simplified Path Loss Model

The difference in falloff exponents and signal propagation measurements among the various empirical studies indicates the difficulty in obtaining a single model to encompass all the vagaries of urban signal propagation. Using ray-tracing models to obtain good approximations for signal propagation is important for determining tight system specifications, and also for evaluating the best locations for base stations in cellular systems. However, for general tradeoff analysis of various system designs it is best to use a simple model that captures the essence of signal propagation without resorting to complicated path-loss models, which are only approximations to the real channel anyway. As such we will generally use the following simplified model for path-loss as a function of distance, where the path loss exponent \(\gamma \), typically ranging between two and six, is the only parameter:

\[P_r = P_t K \left(\frac{d_0}{d} \right)^\gamma. \]

(2.26)

In this approximation, \(K \) is a unitless constant which depends on the antenna characteristics and average attenuation from blockage, while \(d_0 \) is a reference distance for the antenna far-field. Due to scattering phenomena in the antenna near-field, the model (2.26) is generally only valid at transmission distances \(d > d_0 \).

2.6 Log-Normal Shadowing

The path loss with distance described in the previous section results from destructive combining of the multipath components. In addition, the changing configuration of surrounding buildings and obstacles which attenuate both the LOS and the multipath components will also affect the signal amplitude. Thus, in addition to models for path loss, a model for attenuation by buildings is also needed. Since the location, size, and dielectric properties of the buildings causing the attenuation are generally unknown, statistical models are widely used. We now describe the log-normal fading model, which has been confirmed empirically to accurately model the variation in outdoor radio propagation environments caused by building attenuation.

Empirical data is commonly used to obtain the distribution for the random power loss due to building attenuation \cite{2, 12, 27}. Although these loss measurements vary depending on the test location, the
distribution of the received signal power ψ based on path loss and shadowing is approximately log-normal in most empirical studies. This log-normal distribution is given by

$$p(\psi) = \frac{1}{\sqrt{2\pi \sigma_{\psi dB}^2}} \exp \left[-\frac{(10 \log_{10} \psi - \mu_{\psi dB}^2)^2}{2 \sigma_{\psi dB}^2} \right], \quad \psi > 0,$$

(2.27)

where $\xi = 10 / \ln 10$, $\mu_{\psi dB}$ is the mean of $\psi_{dB} = 10 \log \psi$ in dB and $\sigma_{\psi dB}$ is the standard deviation of ψ_{dB}, also in dB. The mean of ψ (the linear power) can be obtained from (2.27) as

$$\mu_\psi = E[\psi] = \exp \left[\frac{\mu_{\psi dB}}{\xi} + \frac{\sigma_{\psi dB}^2}{2\xi^2} \right],$$

(2.28)

and more generally its kth moment is given by

$$E[\psi^k] = \exp \left[\frac{k \mu_{\psi dB}}{\xi} + \frac{k^2 \sigma_{\psi dB}^2}{2\xi^2} \right].$$

(2.29)

The conversion from the linear mean (in dB) to the log mean (in dB) is derived from (2.28) as

$$10 \log \mu_\psi = \mu_{\psi dB} + \frac{\sigma_{\psi dB}^2}{2\xi}.$$

(2.30)

Most plots for log-normal shadowing are based on the log mean $\mu_{\psi dB}$ which is referred to as the average dB SNR and is in units of dB. The linear mean in dB, $10 \log \mu_\psi$, is referred to as the average SNR.

With a change of variables we see that the distribution of the dB value of ψ is Gaussian with mean $\mu_{\psi dB}$ and standard deviation $\sigma_{\psi dB}$:

$$p(\psi_{dB}) = \frac{1}{\sqrt{2\pi \sigma_{\psi dB}^2}} \exp \left[-\frac{(\psi_{dB} - \mu_{\psi dB})^2}{2\sigma_{\psi dB}^2} \right].$$

(2.31)

The log normal distribution is defined by two parameters: $\mu_{\psi dB}$ and $\sigma_{\psi dB}$. If the average attenuation due to both path loss and shadowing is incorporated into the path loss model, then $\mu_{\psi dB} = 0$. However, if the path loss model does not incorporate average attenuation due to shadowing or if the shadowing model incorporates path loss via its mean, then $\mu_{\psi dB}$ as well as $\sigma_{\psi dB}$ must be obtained from an analytical model, simulation, or empirical measurements.

If the mean and standard deviation for the shadowing model are based on empirical measurements then the question arises as to whether they should be obtained by taking averages of the linear or dB values of the empirical power measurements. Specifically, given empirical (linear) power measurements $\{p_i\}_{i=1}^N$, should the mean power be determined as $\mu_\psi = \frac{1}{N} \sum_{i=1}^N p_i$ or as $\mu_{\psi dB} = \frac{1}{10} \sum_{i=1}^N 10 \log p_i$. A similar question arises for computing the empirical variance. In practice it is more common to determine mean power and variance based on averaging the dB values of the empirical measurements. This follows for several reasons. First, as we will see below, the mathematical justification for the log-normal model is based on dB power. In addition, the literature shows that obtaining empirical averages based on dB power measurements leads to a smaller estimation error [31]. Finally, as we saw in Section 2.4.1, power falloff with distance models are often obtained by a piece-wise linear approximation to empirical measurements of dB power versus the log of distance [5]. Most empirical studies support a standard deviation $\sigma_{\psi dB}$ ranging from four to twelve dB [2, 11, 30]. The mean power $\mu_{\psi dB}$ depends on the path loss and building properties in the area under consideration. Typically the mean path loss varies slowly with distance.³

³Both path loss and average attenuation typically change with distance. The path loss variation with distance was described earlier in the chapter. Average attenuation tends to increase with distance since the average number of attenuating objects between the transmitter and receiver typically increases with distance.
The Gaussian model for the distribution of the mean received signal in dB can be justified by the following attenuation model. The attenuation of a signal as it travels through a building of depth \(d \) is approximately equal to

\[
s(d) = ce^{-\alpha d},
\]

where \(c \) is an adjustment constant and \(\alpha \) is an attenuation constant that depends on the building materials and interior. If we assume that \(\alpha \) is approximately equal for all buildings in a given region, then the attenuation of a signal as it propagates through this region is

\[
s(d_t) = ce^{-\alpha d_t},
\]

where \(d_t \) is the sum of the building widths through which the signal travels. If there are many buildings between the transmitter and receiver, then we can approximate \(d_t \) by a Gaussian random variable. Thus, \(\log s(d_t) = \log c - \alpha d_t \) will have a Gaussian distribution with mean \(\mu \) and standard deviation \(\sigma \). The value of \(\sigma \) will depend on the environment and, as mentioned earlier, empirical measurements for \(\sigma \) range between four and twelve dB.

The autocorrelation function for log-normal shadowing is not well documented in the literature. However, measurements in [30] support a wide-sense stationary autocorrelation model for the shadowing \(\psi(d) \), where \(d \) is the transmitter-receiver separation, of the form

\[
A(\delta) = E[(\psi dB(d) - \mu_{\psi dB})(\psi dB(d + \delta) - \mu_{\psi dB})] = \sigma^2_{\psi dB} e^{-\delta/X_c},
\]

In (2.34) \(X_c \) is the decorrelation distance, which is a function of the surrounding building sizes and layout. For users moving at velocity \(v \) the shadowing decorrelation in time \(\tau \) is obtained by substituting \(v\tau = \delta \) in (2.34). Values of \(X_c \) for various measurement conditions are reported in [30].

Note that throughout this book we will use the \(Q \) function notation as a shorthand for calculations involving Gaussian distributions. This notation is defined as follows: for \(x \) a Gaussian random variable with mean zero and variance one,

\[
p(x > z) = Q(z) \triangleq \int_z^\infty \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy. \quad (2.35)
\]

The conversion between the \(Q \) function and complementary error function is

\[
Q(z) = \frac{1}{2} \text{erfc} \left(\frac{z}{\sqrt{2}} \right). \quad (2.36)
\]

2.7 Combined Path Loss and Shadowing

We now combine the simplified path-loss model (2.26) with log-normal shadowing. Since the shadow fading mean \(\mu_{\psi dB} \) is determined by path loss, we obtain the following model for the ratio of receive to transmit power in dB:

\[
\frac{P_r}{P_t}(dB) = 10\log_{10} K - 10\gamma \log_{10} \frac{d}{d_0} + \psi_{dB}, \quad (2.37)
\]

where \(\psi_{dB} \) is a Gaussian-distributed random variable with mean zero and variance \(\sigma^2_{\psi dB} \). If we plot (2.37) for a typical realization of the random process \(\psi_{dB} \), we would obtain a curve similar to that depicted in Figure 2.6. We see here that the path-loss decreases linearly relative to \(\log_{10} d \) with a slope of \(10\gamma \), where \(\gamma \) is the path loss exponent. The variations due to shadowing change more rapidly, on the order of the decorrelation distance \(X_c \).
2.8 Outage Probability and Cell Coverage Area

The combined effects of path loss and shadowing have important implications for cellular system design. Consider a base station inside a circular cell of a given radius R. All mobiles within the cell require some minimum received SNR for acceptable performance. Assuming some reasonable noise and interference model, the SNR requirement translates to a minimum received power throughout the cell, denoted P_{min}. The transmit power at the base station is designed for an average received power at the cell boundary of \bar{P}_R, where the average is computed based on path loss alone. However, random shadowing will cause some locations within the cell to have received power below \bar{P}_R, and others will have received power exceeding \bar{P}_R. This is illustrated in Figure 2.7, where we show contours of constant power based on a fixed transmit power at the base station for path loss alone and for combined path loss and shadowing. For path loss alone constant power contours form a circle around the base station, since received power depends on distance from the base station which is uniform around a circle. For combined path loss and shadowing the contours form an amoeba-like shape due to the random variations about the circular path loss contour caused by shadowing. The constant power contours for combined path loss and shadowing indicate the challenge shadowing poses in cellular system design. Specifically, it is not possible for all users at the cell boundary to receive the same power level. Thus, the base station must either transmit extra power to insure users affected by shadowing receive their minimum required power P_{min}, which causes excessive interference to neighboring cells, or some users within the cell will not meet their minimum received power requirement. In fact, since the Gaussian distribution has infinite tails, there is a nonzero probability that any mobile within the cell will have a received power that falls below the minimum target, even if the mobile is close to the base station. This makes sense intuitively since a mobile may be in a tunnel or blocked by a large building, regardless of its proximity to the base station.

The cell coverage area is defined as the percentage of locations within a cell where the received power P_R resulting from both path loss and shadowing meets or exceeds the minimum required power P_{min}. To compute coverage area, we take an incremental area dA at radius r from the base station (BS) in the cell, as shown in Figure 2.7. Let $P_R(r)$ be the received power in dA from combined path loss and shadowing,
Figure 2.7: Contours of Constant Received Power.
and let $P_A = p(P_R(r) > P_{\text{min}})$ in dA. Then
\[C = \frac{1}{\pi R^2} \int_{\text{cell area}} P_A dA = \frac{1}{\pi R^2} \int_0^{2\pi} \int_0^R P_A r dr d\theta. \] (2.38)

Given the log-normal distribution for the shadowing,
\[p(P_R(r) \geq P_{\text{min}}) = Q \left(\frac{P_{\text{min}} - (10 \log K - 10\gamma \log(r/d_0))}{\sigma_{\psi dB}} \right). \] (2.39)

Locations within the cell that do not meet this minimum power requirement are said to be outage locations. We define the signal outage probability at distance r with respect to P_{min} as the probability that the received power falls below its target minimum level:
\[P_{\text{out}}(P_{\text{min}}, r) = p(P_R(r) < P_{\text{min}}) = 1 - Q \left(\frac{P_{\text{min}} - (10 \log K - 10\gamma \log(r/d_0))}{\sigma_{\psi dB}} \right). \] (2.40)

Combining (2.38) and (2.39) we get
\[C = \frac{2}{R^2} \int_0^R r Q \left(a + b \ln \frac{r}{R} \right) dr, \] (2.41)
where
\[a = \frac{P_{\text{min}} - \overline{P}_R(R)}{\sigma_{\psi dB}} \quad b = \frac{10\gamma \log(e)}{\sigma_{\psi dB}}, \] (2.42)
and $\overline{P}_R = 10 \log K - 10\gamma \log(R/d_0)$ is the received power at the cell boundary (distance R from the base station) due to path loss alone. This integral yields a closed-form solution for C in terms of a and b:
\[C = Q(a) + \exp \left(\frac{2 - 2ab}{b^2} \right) Q \left(\frac{2 - ab}{b} \right). \] (2.43)

If the target minimum received power equals the average power at the cell boundary: $P_{\text{min}} = \overline{P}_R(R)$, then $a = 0$ and the coverage area simplifies to
\[C = \frac{1}{2} + \exp \left(\frac{2}{b^2} \right) Q \left(\frac{2}{b} \right). \] (2.44)

Note that with this simplification C depends only on the ratio $\gamma/\sigma_{\psi dB}$.
Bibliography

Chapter 3

Statistical Multipath Channel Models

The path loss models we examined in Chapter 2 were based on deterministic models for multipath reflection, scattering, and diffraction. We now consider multipath fading models that are nondeterministic, with the channel modeled by a random time-varying impulse response. We will develop a statistical characterization of this channel model and describe its important properties, most significantly its delay spread, coherence bandwidth, Doppler spread, and decorrelation time.

If a very short pulse is transmitted over a multipath channel the received signal will appear as a pulse train, with each pulse corresponding to a distinct multipath component. Consider for example the ten-ray model in Section 2.3.2 of Chapter 2. If a short pulse is transmitted through this channel, the received signal would be a pulse train of ten pulses, with path delays corresponding to the path delays of each ray. Hence, one characteristic of a multipath channel is the time spread of the received signal introduced by the channel, equal to the time delay between the arrival of the first multipath component and the last multipath component. For the ten-ray model this time spread is deterministic, but for random multipath channels the time spread will be a random variable.

Another characteristic of the multipath channel is the time varying nature of the channel. This time variation arises because either the transmitter or receiver is moving, and therefore the location of reflectors in the transmission path which give rise to multipath will change over time. Thus, if we repeat the pulse transmission experiment over and over from a moving transmitter, we will observe changes in the amplitudes, delays, and the number of multipath components in the received pulse train. Since these variations are dependent on the transmission environment and the user mobility, we characterize the time-varying multipath channel statistically.

3.1 Time-Varying Channel Impulse Response

Let the transmitted signal be given by

\[s(t) = \Re \left\{ u(t) e^{j(2\pi f_c t + \phi_0)} \right\}, \]

where \(u(t) \) is a complex baseband signal with bandwidth \(B \) and power \(P_t \), \(f_c \) is the carrier frequency, and \(\phi_0 \) is an arbitrary initial phase. We can express this signal in terms of its in-phase and quadrature components as

\[\Re\{ u(t) \} \cos(2\pi f_c t + \phi_0) - \Im\{ u(t) \} \sin(2\pi f_c t + \phi_0). \]

The corresponding received signal is the sum of the line-of-sight (LOS) path and all \(N(t) \) multipath
components:

\[
 r(t) = \Re \left\{ \sum_{n=0}^{N(t)} R_n(t) \sqrt{G_n(t)} a_n(t) u(t - \tau_n(t)) e^{j2\pi[(f_c + f_{Dn}(t))(t-\tau_n(t))]} \right\},
\]

where \(n = 0 \) corresponds to the LOS path. The unknowns in this expression are the number of multipath components \(N(t) \) and, for the LOS path and each multipath component, its path length \(r_n(t) \) and corresponding delay \(\tau_n(t) = r_n(t)/c \), doppler shift \(f_{Dn}(t) \), reflection coefficient \(R_n(t) \), antenna gain \(\sqrt{G_n(t)} \), and attenuation \(a_n(t) \). The attenuation \(a_n(t) \) is obtained from the path loss and shadowing models of Chapter 2, and the doppler shift \(f_{Dn}(t) = f_D \cos \theta_n(t) \), where \(f_D = v/\lambda_c \) is the ratio of velocity to signal wavelength (also called the doppler frequency: the velocity and doppler frequency are positive if the mobile is moving towards the signal source) and \(\theta_n(t) \) is the angle-of-arrival of the \(n \)th multipath component at the receiver, as illustrated in Figure 3.1. Since all of these parameters change over time, they are characterized as random processes which we assume to be both stationary (over the short term\(^{1}\)) and ergodic. Thus, the received signal is also a stationary and ergodic random process.

![Figure 3.1: Multipath Angle of Arrival](image)

We can simplify \(r(t) \) by the following substitutions. Let \(\alpha_n(t) = R_n(t) \sqrt{G_n(t)} a_n(t) \) and let

\[
 \phi_n(t) = 2\pi[(f_c + f_{Dn}(t))\tau_n(t) - f_{Dn}(t)t] - \phi_0.
\]

We can then rewrite the received signal as

\[
 r(t) = \Re \left\{ \sum_{n=0}^{N(t)} \alpha_n(t) e^{-j\phi_n(t)} u(t - \tau_n(t)) \right\} e^{j2\pi f_c t}.
\]

Since \(\alpha_n \) depends on attenuation while \(\phi_n \) depends on delay and doppler, we assume that these two random processes are independent.

\(^{1}\)The attenuation changes because the path loss and shadowing change, so we assume the attenuation is constant on a time scale much less than the time over which the shadowing and path loss change.
The received signal \(r(t) \) is obtained by convolving the input signal \(s(t) \) with the equivalent low-pass channel impulse response \(c(\tau, t) \):

\[
r(t) = \Re \left\{ \left(\int_{-\infty}^{\infty} c(\tau, t)u(t - \tau) d\tau \right) e^{j2\pi f_t} \right\}.
\]

Note that \(c(\tau, t) \) must have two time parameters: the time of observation \(t \), and the multipath delay time \(\tau \). We see from (3.5) and (3.6) that the \(c(\tau, t) \) must be given by

\[
c(\tau, t) = \sum_{n=0}^{N(t)} \alpha_n(t) e^{-j\phi_n(t)} \delta(\tau - \tau_n(t)),
\]

where \(c(\tau, t) \) represents the equivalent low-pass response of the channel at time \(t \) to an impulse at time \(t - \tau \).

To give a concrete example of this time varying impulse response, consider the system shown in Figure 3.2. At time \(t_1 \) there are three multipath components associated with the received signal with amplitude, phase, and delay triple \((\alpha_i, \phi_i, \tau_i)\), \(i = 1, 2, 3 \). Thus, impulses that were launched into the channel at time \(t_1 - \tau_i, i = 1, 2, 3 \) will all be received at time \(t_1 \), and impulses launched into the channel at any other time will not be received at \(t_1 \) (because there is no multipath component with the corresponding delay). The time-varying impulse response corresponding to \(t_1 \) is shown in Figure 3.3. Also shown in Figure 3.2 is the system at time \(t_2 \), where there are two multipath components associated with the received signal with amplitude, phase, and delay triple \((\alpha_i', \phi_i', \tau_i')\), \(i = 1, 2 \). Thus, impulses that were launched into the channel at time \(t_2 - \tau_i', i = 1, 2 \) will all be received at time \(t_2 \), and impulses launched into the channel at any other time will not be received at \(t_2 \). The time-varying impulse response corresponding to \(t_2 \) is also shown in Figure 3.3.

![System at \(t_1 \) and System at \(t_2 \)](image)

Figure 3.2: System Multipath at Two Different Measurement Times.

If the reflectors generating the multipath components are continuous then the summation in (3.7) should be replaced by an integral. Also, if the channel is stationary then \(c(\tau, t) \) becomes a function of just \(\tau \), since the impulse response is the same for all \(t \). We convert \(c(\tau, t) \) to a function of just \(\tau \) for stationary channels as follows: since \(c(\tau, t) \) is the same for any \(t \) by stationarity, set \(t = \tau \). Then \(c(\tau, t) \) is the response of the channel at time \(\tau \) to an impulse at time zero, so it can be written as \(c(\tau) \). If the channel is nonstationary then the channel response to an impulse at time \(t_1 \) is not necessarily just a shifted version of its response to an impulse at time \(t_2, t_1 \neq t_2 \), as shown in Figure 3.3.

By substituting (3.7) into (3.6) we get back our original received signal (3.5):

\[
r(t) = \Re \left\{ \left(\int_{-\infty}^{\infty} c(\tau, t)u(t - \tau) d\tau \right) e^{j2\pi f_t} \right\}
\]
Figure 3.3: Response of Nonstationary Channel.

\[
= \Re \left\{ \left(\int_{-\infty}^{\infty} \left(\sum_{n=0}^{N(t)} \alpha_n(t) e^{-j\phi_n(t)} \delta(\tau - \tau_n(t)) \right) u(t - \tau) d\tau \right) e^{j2\pi f_c t} \right\} \\
= \Re \left\{ \sum_{n=0}^{N(t)} \alpha_n(t) e^{-j\phi_n(t)} u(t - \tau_n(t)) e^{j2\pi f_c t} \right\}.
\] (3.8)

Note that in general, \(f_c + f_{D_n}(t) \gg 1/\tau_n(t) \) and therefore a small change in the path delay can lead to a very large phase change in a given multipath component. This gives rise to rapid variation in the received signal strength due to constructive and destructive addition of the multipath rays. Conversely, the amplitude term \(\alpha(t) \) changes much more slowly, since the antenna gains and reflection coefficients are relatively constant and the path loss changes according to the decorrelation distance of the shadow fading, as described in Chapter 2. Similarly, the multipath delay terms \(\tau_n(t) \) change relatively slowly compared to the phase terms, since the scatterer locations are fixed and the path delays associated with each scatterer change slowly relative to the distance traveled by the transmitter or receiver.

The multipath delay spread, unfortunately, does not have one standard definition, especially since multipath can be deterministic (for ray tracing) or random (for statistical models). For deterministic multipath delay spread is often defined as the time-of-arrival difference between the first and last multipath components:

\[
T_m \triangleq \max_n \tau_n - \min_n \tau_n.
\] (3.9)

The minimum delay \(\min_n \tau_n \) is often normalized to zero, corresponding to a fixed time shift in the received signal, and we shall follow this convention in the analysis below. For a given channel realization or a ray tracing model, the delay spread defined in this way is deterministic. However, if we consider all possible channel realizations then the delay spread under this definition will be a random variable. Let \(p_{T_m}(t) \) denote the probability distribution of the delay spread over all possible channel realizations. The average delay spread is then \(\mathbb{E}[T_m] = \int t p_{T_m}(t) dt \) and its standard deviation, also called the \textit{rms delay spread}, is
given by
\[\sigma_{T_m} = \sqrt{\mathbb{E}[T_m^2] - (\mathbb{E}[T_m])^2}. \] (3.10)

The rms and average delay spread are often used to characterize multipath channels, and these values are different in different environments (e.g. indoors, macrocells, microcells, etc.)

3.2 Narrowband fading models

If the average channel delay spread \(T_m \) is small relative to the inverse signal bandwidth \((T_m << B_u^{-1}) \) then \(u(t - \tau_i) \approx u(t) \), and we can rewrite (3.5) as

\[r(t) = \mathbb{R}\left\{ u(t)e^{j2\pi f_c t} \left(\sum_n \alpha_n(t)e^{-j\phi_n(t)} \right) \right\} \] (3.11)

Equation (3.11) differs from the original transmitted signal by the complex scale factor in parentheses. This scale factor is independent of the transmitted signal \(s(t) \) or, equivalently, the baseband signal \(u(t) \), as long as the narrowband assumption \(T_m << 1/B \) is satisfied. In order to characterize this scale factor we therefore choose \(s(t) \) to be an unmodulated carrier:

\[s(t) = \mathbb{R}\{e^{j2\pi f_c t}\} = \cos 2\pi f_c t, \] (3.12)

which is narrowband for any \(T_m \).

With this assumption the received signal becomes

\[r(t) = \mathbb{R} \left\{ \sum_{n=0}^{N(t)} \alpha_n(t)e^{-j\phi_n(t)} e^{j2\pi f_c t} \right\} = r_I(t) \cos 2\pi f_c t + r_Q(t) \sin 2\pi f_c t, \] (3.13)

where the in-phase and quadrature components are given by

\[r_I(t) = \sum_{n=1}^{N(t)} \alpha_n(t) \cos \phi_n(t), \] (3.14)

and

\[r_Q(t) = \sum_{n=1}^{N(t)} \alpha_n(t) \sin \phi_n(t). \] (3.15)

For \(N(t) \) large we can invoke the Central Limit Theorem and the fact that \(\alpha_n(t) \) and \(\phi_n(t) \) are stationary and ergodic to approximate \(r_I(t) \) and \(r_Q(t) \) as jointly Gaussian random processes. The Gaussian property is also true for small \(N \) if the \(\alpha_n(t) \) are Rayleigh distributed (true for “rough” multipath reflection) and the \(\phi_n(t) \) are uniformly distributed on \([-\pi, \pi]\) [1].

3.2.1 Autocorrelation, Cross Correlation, and Power Spectral Density

We now derive the autocorrelation and cross correlation of the in-phase and quadrature received signal components \(r_I(t) \) and \(r_Q(t) \). Our derivations are based on some key assumptions which generally apply to propagation models without a LOS component. Thus, these formulas are not necessarily valid when a LOS component exists. We assume throughout this section that the amplitude \(\alpha_n(t) \), multipath delay
\(\tau_n(t) \) and doppler \(f_{Dn}(t) \) are changing slowly enough such that they are constant over the time intervals of interest: \(\alpha_n(t) \approx \alpha_n, \ \tau_n(t) \approx \tau_n, \) and \(f_{Dn}(t) \approx f_{Dn} \).

We now make a key assumption: we assume that the term \(f_c \tau_n \) changes rapidly relative to all other phase terms. This is reasonable for multipath signals without a LOS components, since \(f_c \) is large and hence the term \(f_c \tau_n \) can go through a 360 degree rotation for a small change in multipath delay (the assumption will not hold for multipath signals with a LOS component where \(\tau_n = 0 \)). Under this assumption \(\phi_n \) is uniformly distributed on \([-\pi, \pi]\). With this assumption

\[
E[r_I(t)] = E[\sum_n \alpha_n \cos \phi_n(t)] = \sum_n E[\alpha_n] E[\cos \phi_n(t)] = 0, \tag{3.16}
\]

where the second equality follows from the independence of \(\alpha_n \) and \(\phi_n \) and the last equality follows from the uniform distribution on \(\phi_n \). Similarly we can show that \(E[r_Q(t)] = 0 \). Thus, the received signal also has \(E[r(t)] = 0 \), i.e., it is a zero-mean Gaussian process.

Consider now the autocorrelation of the in-phase and quadrature components. Using the independence of \(\alpha_n \) and \(\phi_n \), the independence of \(\phi_n \) and \(\phi_m, n \neq m \), and the uniform distribution of \(\phi_n \) we get the following set of equalities:

\[
E[r_I(t)r_Q(t)] = E \left[\sum_n \alpha_n \cos \phi_n(t) \sum_m \alpha_m \sin \phi_m(t) \right] = \sum_n \sum_m E[\alpha_n \alpha_m] E[\cos \phi_n(t) \sin \phi_m(t)] = \sum_n E[\alpha_n^2] E[\cos \phi_n(t) \sin \phi_n(t)] = 0. \tag{3.17}
\]

Thus, \(r_I(t) \) and \(r_Q(t) \) are uncorrelated and, since they are jointly Gaussian processes, this means they are independent.

Following a similar derivation as in (3.17) we obtain the autocorrelation of \(r_I(t) \) as

\[
A_{r_I}(t, \tau) = E[r_I(t)r_I(t + \tau)] = \sum_n E[\alpha_n^2] E[\cos \phi_n(t) \cos \phi_n(t + \tau)]. \tag{3.18}
\]

Now making the substitution

\[
\phi_n(t) = 2\pi [f_c \tau_n + f_{Dn} \tau_n - f_{Dn} t] - \phi_0 \tag{3.19}
\]

we get

\[
E[\cos \phi_n(t) \cos \phi_n(t + \tau)] = .5 E[\cos 2\pi f_{Dn} \tau] + .5 E[\cos (4\pi f_c \tau_n + 4\pi f_{Dn} \tau_n - 4\pi f_{Dn} t - 2\pi f_{Dn} \tau - 2\phi_0)]. \tag{3.20}
\]

Since \(f_c \tau_n \) changes rapidly relative to all other phase terms and is uniformly distributed, the second expectation term in (3.20) goes to zero, and thus

\[
A_{r_I}(t, \tau) = .5 \sum_n E[\alpha_n^2] E[\cos(2\pi f_{Dn} \tau)] = .5 \sum_n E[\alpha_n^2] E_{\phi_n} [\cos (2\pi \nu \tau \cos \theta_n / \lambda_c)]. \tag{3.21}
\]

Since \(A_{r_I}(t, \tau) \) depends only on \(\tau, A_{r_I}(t, \tau) = A_{r_I}(\tau) \), and \(r_I(t) \) is a wide-sense stationary (WSS) random process.
Using a similar derivation we can show that the quadrature component is also WSS with autocorrelation \(A_{r_Q}(\tau) = A_{r_I}(\tau) \). In addition, the cross correlation between the in-phase and quadrature components depends only on the time difference \(\tau \) and is given by

\[
A_{r_I, r_Q}(t, \tau) = A_{r_I, r_Q}(\tau) = E[r_I(t) r_Q(t + \tau)] = .5 \sum_n E[a_n^2] E[\theta_n \sin 2\pi v\tau \cos \theta_n / \lambda_c] = -E[r_Q(t) r_I(t + \tau)].
\] (3.22)

Using these results we can show that the received signal \(r(t) = r_I(t) \cos(2\pi f_c t) + r_Q(t) \sin(2\pi f_c t) \) is also WSS with autocorrelation

\[
A_r(\tau) = E[r(t) r(t + \tau)] = A_{r_I}(\tau) \cos(2\pi f_c \tau) + A_{r_I, r_Q}(\tau) \sin(2\pi f_c \tau).
\] (3.23)

We now make one more simplifying assumption, which is generally true for macrocells but not microcells. If we assume that the multipath angle-of-arrival \(\theta_n \) is uniformly distributed then

\[
E[\theta_n \cos(2\pi v\tau \cos \theta_n / \lambda_c)] = J_0(2\pi v\tau / \lambda_c) = J_0(2\pi f_D \tau),
\] (3.24)

where \(J_0 \) is a Bessel function of the 0th order. With this approximation the autocorrelations simplify to

\[
A_{r_I}(\tau) = A_{r_Q}(\tau) = \frac{\Omega_p}{2} J_0(2\pi f_D \tau),
\] (3.25)

where \(\Omega_p = \sum_n E[\theta_n^2] \). Similarly, for \(\theta_n \) uniformly distributed the cross correlation simplifies to \(A_{r_I, r_Q}(\tau) = 0 \).

A plot of \(J_0(2\pi f_D \tau) = 0 \) is shown in Figure 3.4. There are several interesting observations from this plot. First we see that the autocorrelation is zero for \(f_D \tau \approx \lambda_c \) or, equivalently, for \(v \tau \approx \lambda_c \). Thus, the signal decorrelates over a distance of approximately one half wavelength, under the uniform \(\theta_n \) assumption. This approximation is commonly used as a rule of thumb to determine many system parameters of interest. For example, we will see in Chapter 7 that obtaining independent fading paths can be exploited by antenna diversity to remove some of the negative effects of fading. The antenna spacing must be such that each antenna receives an independent fading path and, based on our analysis here, an antenna spacing of \(4\lambda_c \) should therefore be used. Another interesting characteristic of this plot is that the signal decorrelates after it becomes uncorrelated. Thus, we cannot assume that the signal remains independent from its initial value at \(d = 0 \) for separation distances greater than \(4\lambda_c \). As a result, a Markov model is not completely accurate for Rayleigh fading, because of this decorrelation property. However, it is generally assumed that once the correlation function falls below \(.5 \), the signal has become decorrelated and, using this assumption, the fading over a separation distance greater than a half wavelength is decorrelated and thus the fading process is Markov.

The power spectral densities (PSDs) of \(r_I(t) \) and \(r_Q(t) \), denoted by \(S_{r_I}(f) \) and \(S_{r_Q}(f) \), respectively, are obtained by taking the Fourier transform of their respective autocorrelation functions relative to the delay parameter \(\tau \). Since these autocorrelation functions are equal, so are the PSDs. Thus

\[
S_{r_I}(f) = S_{r_Q}(f) = \mathcal{F}[A_{r_I}(\tau)] = \begin{cases} \frac{\Omega_p}{4\pi f_D} \frac{1}{\sqrt{1-(f/f_D)^2}} & |f| \leq f_D \\ 0 & \text{else} \end{cases}
\] (3.26)

Using (3.23), (3.26), and simple properties of the Fourier Transform we obtain the PSD of the received signal \(r(t) \) as:

\[
S_r(f) = \mathcal{F}[A_r(\tau)] = .5[S_{r_I}(f - f_c) + S_{r_I}(-f - f_c)].
\] (3.27)

We see from (3.26) and (3.27) that the PSD \(S_r(f) \) goes to infinity at frequencies \(f = f_c \pm f_D \). This will not be true in practice, due to the the approximations inherent in all of our above assumptions, but the
Figure 3.4: Bessel Function ($d = f_D \tau$)
PSD will be maximized at frequencies associated with the maximum doppler frequency away from the carrier and minimized at frequencies close to the carrier. The intuition for this is that the multipath components at doppler frequencies close to the maximum correspond to components with an angle of arrival similar to the direct path signal. There tend to be a larger number of such components, and they tend to be stronger, than multipath components received at zero doppler, which correspond to an angle of arrival of \(\pi \) (i.e. components arrive at an angle perpendicular to the direction of motion).

Formulas for the autocorrelation and PSD when \(\theta_n \) is not uniformly distributed, corresponding to typical distributions in microcells, can be found in [4, 9].

The PSD is useful in constructing simulations for the fading process. A common method for simulating the Rayleigh fading process is to pass two independent white Gaussian noise sources with power spectral density \(N_0 / 2 \) through lowpass filters with frequency response \(H(f) \) that satisfies

\[
S_v(f) = S_q(f) = \frac{N_0}{2}|H(f)|^2.
\]

The filter outputs then correspond to the in-phase and quadrature components of the Rayleigh fading process. A similar procedure using discrete filters can be used to generate discrete fading processes. Most communication simulation packages (e.g. Matlab, COSSAP) have standard modules that simulate Rayleigh fading based on this method. More details on this simulation method, as well as alternative methods, can be found in [9, 5, 6].

3.2.2 Envelope and Power Distributions

For any two Gaussian random variables \(X \) and \(Y \) with mean zero and variance \(\sigma^2 \) it can be shown that \(Z = \sqrt{X^2 + Y^2} \) is Rayleigh-distributed [1]. We saw above that for \(\phi_n(t) \) uniformly distributed, \(r_I \) and \(r_Q \) are both zero mean Gaussian random variables. If we assume a variance of \(\sigma^2 \) for both in-phase and quadrature components then the signal envelope

\[
z(t) = |r(t)| = \sqrt{r_I^2(t) + r_Q^2(t)}
\]

is Rayleigh-distributed with distribution

\[
p_z(x) = \frac{2x}{\Omega_p} \exp[-x^2/\Omega_p], \quad x \geq 0,
\]

where the average signal power is \(\Omega_p = \sum n E[\alpha_n^2] = 2\sigma^2 \).

We obtain the power distribution by making the change of variables \(z^2(t) = |r(t)|^2 \) in (3.30) to obtain

\[
p_z(x) = \frac{1}{\Omega_p} e^{-x^2/\Omega_p}, \quad x \geq 0.
\]

Thus, the received signal power is exponentially distributed.

If the channel has a LOS component then \(r_I(t) \) and \(r_Q(t) \) are not mean zero. In this case the received signal equals the superposition of our Rayleigh fading multipath model and a LOS signal with slowly-varying amplitude and phase. The signal envelope in this case can be shown to have a Rician distribution [7], given by

\[
p_z(x) = \frac{x}{\sigma^2} \exp\left[\frac{-(x^2 + s^2)}{2\sigma^2}\right] I_0\left(\frac{xs}{\sigma^2}\right), \quad x \geq 0,
\]
where \(2\sigma^2 = \sum_{n \neq 0} E[\alpha_n^2] \) is the average power in the multipath components and \(s^2 = \alpha_0^2 \) is the average power in the LOS component. The function \(I_0 \) is the modified Bessel function of 0th order. The average power in the Rician fading is given by

\[
\Omega_p = \int_0^\infty x^2 p_z(x)dx = s^2 + 2\sigma^2.
\]

(3.33)

The Rician distribution is often described in terms of a fading parameter \(K \), defined by

\[
K = \frac{s^2}{2\sigma^2}.
\]

(3.34)

Thus, \(K \) is the ratio of the power in the LOS component to the power in the other (non-LOS) multipath components. For \(K = 0 \) we have Rayleigh fading, and for \(K = \infty \) we have an AWGN channel, i.e. no multipath. The fading parameter \(K \) is therefore a measure of the severity of the fading: a small \(K \) implies severe fading, a large \(K \) implies a more benign channel. Making the substitution \(s^2 = K \Omega_p/(K + 1) \) and \(2\sigma^2 = \Omega_p/(K + 1) \) we can write the Rician distribution in terms of \(K \) as

\[
P_z(x) = \frac{2x(K + 1)}{\Omega_p} \exp \left[-K - \frac{(K + 1)x^2}{\Omega_p} \right] I_0 \left(2x \sqrt{\frac{K(K + 1)}{\Omega_p}} \right), \quad x \geq 0.
\]

(3.35)

Both the Rayleigh and Rician distributions can be obtained mathematically under certain assumptions. However, some experimental data does not fit well into either of these distributions. Thus, a more general fading distribution was derived based mainly on empirical measurements. This distribution is called the Nakagami fading distribution, and is given by

\[
P_z(x) = \frac{2m x^{2m-1}}{\Gamma(m) \Omega_p^m} \exp \left[-\frac{mx^2}{\Omega_p} \right], \quad m \geq .5,
\]

(3.36)

where \(\Omega_p \) is the average power.

The Nakagami distribution is parameterized by its fading parameter \(m \). For \(m = 1 \) the distribution in (3.36) reduces to Rayleigh fading. For \(m = (K + 1)^2/(2K + 1) \) the distribution in (3.36) reduces to Rician fading with parameter \(K \). For \(m = \infty \) we get an AWGN channel. Thus, the Nakagami distribution can model Rayleigh and Rician distributions, as well as more general ones. Note that the \(m \) parameter can be less than one, in which case the fading is “worse than Rayleigh”. Although it is difficult to obtain a mathematical model with more severe fading than the Rayleigh distribution, the Nakagami distribution is based on empirical data, which have exhibited more extreme fading. The power distribution for Nakagami fading is obtained by a change of variables:

\[
P_z(x) = \left(\frac{m}{\Omega_p} \right)^m x^{m-1} \exp \left[-\frac{mx}{\Omega_p} \right].
\]

(3.37)

3.2.3 Level Crossing Rate and Average Fade Duration

The envelope level crossing Rate \(L_R \) is defined as the expected rate (crossings per second) at which the signal envelope crosses the level \(R \) in the positive direction. Obtaining \(L_R \) requires the joint distribution of the signal envelope \(z = |r| \) and its derivative \(\dot{z}, p(\dot{z}, \ddot{z}) \). We now derive \(L_R \) based on this joint distribution.

Consider the fading process shown in Figure 3.5. The expected amount of time the signal envelope spends in the interval \((R, R + dz) \) with envelope slope \(\dot{z} \) over time duration \(dt \) is \(A = p(R, \dot{z})dz\dot{z}dt \).
The time required to cross from R to $R + dz$ once for a given envelope slope \dot{z} is $B = dz/\dot{z}$. The ratio $A/B = \dot{z}p(R, \dot{z}) dz dt$ is the expected number of crossings of the envelope z within the interval $(R, R + dz)$ for a given envelope slope \dot{z} over time duration dt. The expected number of crossings of the envelope level R for slope \dot{z} in a time interval $[0, T]$ is

$$\int_0^T \dot{z}p(R, \dot{z}) dz dt = \dot{z}p(R, \dot{z}) dz T.$$ \hfill (3.38)

So the expected number of crossings of the envelope level R with positive slope over the interval $[0, T]$ is

$$N_R = T \int_0^\infty \dot{z}p(R, \dot{z}) dz.$$ \hfill (3.39)

Finally, the expected number of crossings of the envelope level R per second, i.e. the level crossing rate, is

$$L_R = \frac{N_R}{T} = \int_0^\infty \dot{z}p(R, \dot{z}) dz.$$ \hfill (3.40)

Note that this is a general result that applies for any random process.

![Figure 3.5: Level Crossing Rate and Fade Duration for Fading Process.](image)

The joint pdf of z and \dot{z} for Rician fading was derived in [7], and is given by Equation 2.78 in [9]. The level crossing rate for Rician fading is then obtained by using this pdf in (3.40), and is given by

$$L_R = \sqrt{2\pi(K + 1)f_D \rho e^{-K - (K+1)\rho^2}} I_0(2\rho \sqrt{K(K + 1)}),$$ \hfill (3.41)

where $\rho = R/\sqrt{\Omega_p}$. It is easily shown that the rate at which the signal power crosses a threshold value γ_0 obeys the same formula (3.41) with $\rho = \sqrt{\gamma_0/\Omega_p}$. For Rayleigh fading ($K = 0$) the level crossing rate simplifies to

$$L_R = \sqrt{2\pi f_D \rho e^{-\rho^2}},$$ \hfill (3.42)

where $\rho = R/\sqrt{\Omega_p}$.

We define the average signal fade duration as the average time that the signal envelope stays below a given level R. Let t_i denote the duration of the ith fade over a time interval $[0, T]$, as illustrated in Figure 3.5. Thus t_i equals the length of time that the signal envelope stays below R on its ith crossing. Since $z(t)$ is stationary and ergodic, for T sufficiently large we have

$$p(z(t) < R) = \frac{1}{T} \sum_i t_i.$$ \hfill (3.43)

55
Thus, for T sufficiently large the average fade duration is

$$
\bar{t}_R = \frac{1}{TL_R} \sum_{i=1}^{L_R} t_i \approx \frac{p(z(t) < R)}{L_R}.
$$

(3.44)

Using the Rayleigh distribution for $p(z(t) < R)$ yields

$$
\bar{t}_R = \frac{e^{-\rho f_D^2} - 1}{\rho f_D \sqrt{2\pi}}.
$$

(3.45)

The average fade duration for Rician fading is given by Equation 2.93 in [9].

The average fade duration indicates the number of bits or symbols affected by a deep fade. Specifically, consider an uncoded system with bit time T_b. Suppose the bit has a high error probability if $z < R$. Then if $T_b \approx \bar{t}_R$, the system will likely experience single error events, where for bits that are received in error, the previous and subsequent bits are likely to be received correctly (since $z > R$ for these bits). On the other hand, if $T_b \ll \bar{t}_R$, then many subsequent bits are received with $z < R$, so large bursts of errors are likely. Finally, if $T_b \gg \bar{t}_R$ the fading is averaged over a bit time in the demodulator, so the fading can be neglected and the channel modeled as just AWGN. These issues will be explored in more detail in Chapter 9, when we consider coding and interleaving.

3.2.4 Finite State Markov Models

The complex mathematical characterization of flat-fading described in the previous subsections can be difficult to incorporate into wireless performance analysis such as the packet error probability. Therefore, simpler models that capture the main features of flat-fading channels are needed for these analytical calculations. One such model that has been investigated extensively in the recent literature is the Finite State Markov Model. In this model fading is approximated as a discrete-time Markov process with time discretized to a given interval T (typically the symbol period). Specifically, the set of all possible fading gains is modeled as a set of finite channel states. The channel varies over these states at each interval T according to a set of Markov transition probabilities. FSMCs have been used extensively in the recent literature to model both mathematical and experimental fading models, including satellite channels [10], indoor channels [11], Rayleigh fading channels [12, 15], Ricean fading channels [16], and Nakagami-m fading channels [13]. They have also been used for system design and system performance analysis in [14, 15]. First-order FSMC models have been shown to be deficient in computing performance analysis, so higher order models are generally used. The FSMC models for fading typically model amplitude variations only, although there has been some recent work on FSMC models for phase in fading [17] or phase-noisy channels [18].

A detailed FSMC model for Rayleigh fading was developed in [12]. In this model the time-varying SNR associated with the Rayleigh fading, γ lies in the range $0 \leq \gamma \leq \infty$. The FSMC model discretizes this fading range into regions so that the jth region R_j is defined as $R_j = \gamma : A_j \leq \gamma < A_{j+1}$, where the region boundaries $\{A_j\}$ and the total number of fade regions are parameters of the model. This model also assumes that γ stays within the same region over time interval T and given that the channel is in state R_j, at the next time interval the channel can only transition to R_{j-1}, R_j, or R_{j+1}, a reasonable assumption under when $f_D T$ is small. Under this assumption the transition probabilities between regions are derived in [12] as

$$
p_{i,j+1} = \frac{N_{j+1}}{\pi_j}, \quad p_{i,j-1} = \frac{N_j}{\pi_j}, \quad p_{i,j} = 1 - p_{i,j+1} - p_{i,j-1},
$$

(3.46)
where \(N_j \) is the level-crossing rate at \(A_j \) and \(\pi_j \) is the steady-state distribution corresponding to the \(j \)th region: \(\pi_j = p(\gamma \in R_j) = p(A_j \leq \gamma < A_{j+1}) \).

3.3 Wideband Fading Models

When the signal is not narrowband we get another form of distortion due to the multipath delay spread. In this case a short transmitted pulse of duration \(T \) will result in a received signal that is of duration \(T + T_m \), where \(T_m \) is the multipath delay spread. Thus, the duration of the received signal may be significantly increased. This is illustrated in Figure 3.6. In this figure, a pulse of width \(T \) is transmitted over a multipath channel. If the multipath delay spread \(T_m \ll T \) then the multipath components are received roughly on top of one another, as shown on the upper right of the figure. The resulting constructive and destructive interference causes amplitude fading of the pulse, but there is little time-spreading of the pulse and therefore little interference with a subsequently transmitted pulse. On the other hand, if the multipath delay spread \(T_m \gg T \), then each of the different multipath components can be resolved, as shown in the lower right of the figure. However, these multipath components interfere with subsequently transmitted bits. This effect is called intersymbol interference. There are several techniques to mitigate the effects of intersymbol interference, including equalization, multicarrier modulation, and spread spectrum. These techniques are discussed in later chapters. Note that intersymbol interference is small when \(T >> T_m \), but this can place significant constraints on data rate.

![Multipath Resolution](image)

Figure 3.6: Multipath Resolution

Mathematically, as the transmit signal bandwidth \(B \) increases so that \(T_m \approx T = B^{-1} \), the approximation \(u(t - \tau_n(t)) \approx u(t) \) is no longer valid. Thus, the received signal is a sum of copies of the original signal, where each copy is delayed in time by \(\tau_n \) and shifted in phase by \(\phi_n(t) \). The signal copies will combine destructively when their phase terms differ significantly, and will distort the direct path signal when \(u(t - \tau_i) \) differs from \(u(t) \).

Although the approximation in (3.11) no longer applies when the signal bandwidth is large relative to the inverse of the multipath delay spread, if the number of multipath components is large and the phase of each component is uniformly distributed then the received signal will still be a zero-mean complex Gaussian process with a Rayleigh-distributed envelope. The difference between the wideband and narrowband fading models is the resolution of the different multipath components. For narrowband signals, the multipath components have a time resolution that is less than the inverse of the signal bandwidth, so the multipath components of (3.7) are combined into one signal with random amplitude and phase. However, with wideband signals, each of the different multipath components can be resolved.
at the receiver. This resolution allows the multipath channel to be characterized in more detail using correlation functions and power spectral density functions.

The starting point for all of these functions is the autocorrelation of the channel \(c(\tau, t) \). We define the channel autocorrelation as

\[
A_c(\tau_1, \tau_2; t, \Delta t) = \frac{1}{2} \mathbb{E}[c^*(\tau_1; t)c(\tau_2; t + \Delta t)],
\]

where the \(\frac{1}{2} \) factor is due to the equivalent baseband representation of the impulse response. Most channels in practice are wide-sense station (WSS), such that the joint statistics of a channel measured at two different times \(t \) and \(t + \Delta t \) depends only on the time difference \(\Delta t \). Thus, for WSS channels the autocorrelation becomes

\[
A_c(\tau_1, \tau_2; \Delta t) = \frac{1}{2} \mathbb{E}[c^*(\tau_1; t)c(\tau_2; t + \Delta t)],
\]

Typically, the channel response associated with a given multipath component of delay \(\tau_1 \) is uncorrelated with the response associated with a multipath component at a different delay \(\tau_2 \neq \tau_1 \), since the power is caused by different scatterers. We say that such a channel has uncorrelated scattering (US). We abbreviate channels that are WSS with US as WSSUS channels. Incorporating the US property into (3.48) yields

\[
\frac{1}{2} \mathbb{E}[c^*(\tau_1; t)c(\tau_2; t + \Delta t)] = A_c(\tau_1; \Delta t) \delta[\tau_1 - \tau_2] = A_c(\tau; \Delta t),
\]

where \(A_c(\tau; \Delta t) \) gives the average power output as a function of the time delay \(\tau = \tau_1 = \tau_2 \) and the difference \(\Delta t \) in observation time. This function assumes that \(\tau_1 \) and \(\tau_2 \) satisfy \(|\tau_1 - \tau_2| > B^{-1} \), since otherwise the receiver can’t resolve the two components. In this case the two components are modeled as a single multipath component with delay \(\tau \approx \tau_1 \approx \tau_2 \).

The most important characteristics of the wideband channel, including the delay power spectrum, coherence bandwidth, doppler power spectrum, and coherence time, are derived from (3.49). These functions are described in the subsequent sections.

3.3.1 Multipath Intensity Profile

The multipath intensity profile \(A_c(\tau) \), also called the delay power spectrum, is defined as the autocorrelation (3.49) with \(\Delta t = 0 \): \(A_c(\tau) \triangleq A_c(\tau, 0) \). This profile represents the average power of the channel response at time \(\tau \) to an impulse at time zero. The multipath intensity profile tells you the average power associated with a given multipath delay. Recall from Section 3.1 that for a given channel realization or deterministic channel model, the delay spread is given by (3.9). Moreover, if \(p_{m}(\tau) \) denotes the delay spread distribution over all possible channel realizations, then the average delay spread is \(\mu_{T_m} = \int \tau p_{m}(\tau) d\tau \) and the standard deviation, also called the rms delay spread, is given by

\[
\sigma_{T_m} = \sqrt{\mathbb{E}[T_m^2] - (\mathbb{E}[T_m])^2}.
\]

However, since \(p_{m}(\tau) \) is often unknown, the average and rms delay spread are sometimes defined in terms of \(A_c(\tau) \) as

\[
\mu_{T_m} = \frac{\int_0^\infty \tau A_c(\tau)d\tau}{\int_0^\infty A_c(\tau)d\tau},
\]

and

\[
\sigma_{T_m} = \sqrt{\frac{\int_0^\infty (\tau - \mu_{T_m})^2 A_c(\tau)d\tau}{\int_0^\infty A_c(\tau)d\tau}},
\]

\(^2\)This will not be true with rough reflection surfaces, where an incoming ray reflecting off the surface results in multiple reflections spaced close together in time.
Since average delay spread and rms delay spread have multiple definitions, the exact definition in use must be inferred from whether the model is deterministic or statistical and, in the latter case, if the distribution of \(T_m \) is known.

If the symbol period is small relative to the delay spread, then the received signal will experience intersymbol interference (ISI). Typically these ISI effects must be mitigated or the BER performance will be severely degraded. Intersymbol interference, its performance degradation, and ISI mitigation methods will be discussed in later chapters.

3.3.2 Coherence Bandwidth

We can also characterize the time-varying multipath channel in the frequency domain by taking the Fourier transform of \(c(\tau,t) \) with respect to \(\tau \). Specifically, define

\[
T(f; t) = \int_{-\infty}^{\infty} c(\tau; t)e^{-j2\pi f\tau}d\tau.
\]

(3.53)

Since \(c(\tau; t) \) is a complex zero-mean Gaussian random variable in \(t \), the Fourier transform above just represents the sum of complex zero-mean Gaussian random variables, and therefore has the same statistics as \(c(\tau; t) \). Again assuming that the channel is wide-sense stationary, the autocorrelation of (3.53) is

\[
A_c(f_1, f_2; \Delta t) = \mathbb{E}[T^*(f_1; t)T(f_2; t + \Delta t)].
\]

(3.54)

It is straightforward to show that [2]

\[
A_c(f_1, f_2; \Delta t) = \int_{-\infty}^{\infty} A_c(\tau; \Delta t)e^{-j2\pi (f_2 - f_1)\tau}d\tau \overset{\Delta}{=} A_c(\Delta f; \Delta t),
\]

(3.55)

where \(\Delta f = f_2 - f_1 \). Thus, the autocorrelation of \(T(f; t) \) in frequency depends only on the frequency difference \(\Delta f \). The function \(A_c(\Delta f; \Delta t) \) can be measured in practice by transmitting a pair of sinusoids which are separated in frequency by \(\Delta f \) through the channel and calculating their cross correlation at the receiver for the time separation \(\Delta t \).

If we define \(A_c(\Delta f) \overset{\Delta}{=} A_c(\Delta f; 0) \) then from (3.55),

\[
A_c(\Delta f) = \int_{-\infty}^{\infty} A_c(\tau)e^{-j2\pi \Delta f \tau}d\tau.
\]

(3.56)

So \(A_c(\Delta f) \) is the Fourier transform of the multipath intensity profile. Since \(A_c(\Delta f) \) is an autocorrelation, the channel response is approximately independent at frequency separations \(\Delta f \) where \(A_c(\Delta f) \approx 0 \). By the Fourier transform relationship, the minimum separation \((\Delta f)_c \) for which the channel response is roughly independent is \((\Delta f)_c \approx 1/T_m \), where \(T_m \) is the delay spread defined in the previous section. This minimum frequency separation \((\Delta f)_c \) is called the coherence bandwidth of the channel, which is also denoted as \(B_c \).

In general, if we are transmitting a narrowband signal with bandwidth \(B \ll (\Delta f)_c \), then fading across the entire signal bandwidth is highly correlated, i.e. the fading is roughly equal across the entire signal bandwidth. This is usually referred to as flat fading. On the other hand, if the signal bandwidth \(B \gg (\Delta f)_c \), then the channel amplitude values at frequencies separated by more than the coherence bandwidth are roughly independent. Thus, the channel amplitude varies widely across the signal bandwidth. In this case the channel is called frequency-selective. When \(B \approx (\Delta f)_c \) then channel behavior is somewhere between flat and frequency-selective fading.

59
3.3.3 Doppler Power Spectrum

The time variations of the channel which arise from transmitter or receiver motion cause a Doppler shift in the received signal. This Doppler effect can be characterized by taking the Fourier transform of $A_c(\Delta f; \Delta t)$ relative to Δt:

$$S_C(\Delta f; \rho) = \int_{-\infty}^{\infty} A_c(\Delta f; \Delta t)e^{-j2\pi \rho \Delta t} d\Delta t.$$ \hspace{1cm} (3.57)

Setting Δf to zero and defining $S_C(\rho) \triangleq S_C(0; \rho)$, it is easily seen that $S_C(\rho)$ is the Fourier transform of $A_c(\Delta t) \triangleq A_c(0; \Delta t)$ with respect to Δt. The function $S_C(\rho)$ is called the Doppler power spectrum of the channel, since it gives the signal intensity as a function of the Doppler frequency ρ. The maximum ρ value for which $|S_C(\rho)|$ is greater than zero is called the Doppler spread of the channel, and is denoted by B_d. By the Fourier transform relationship, if we define the channel coherence time $(\Delta t)_c$ to be the range of values over which $A_c(\Delta t)$ is nonzero, then $B_d \approx 1/(\Delta t)_c$. If the transmitter and reflectors are all stationary and the receiver is moving with velocity v, then $B_d \leq v/\lambda = f_D$.

3.3.4 Scattering Function

The scattering function is the final function we consider, and it allows us to connect the Fourier transform relationships defined in the previous sections. Specifically, the scattering function $S(\tau; \rho)$ is defined as the Fourier transform of $A_c(\tau; \Delta t)$ in the Δt variable. Thus, from (3.57), $S(\tau; \rho)$ is the inverse Fourier transform of $S_C(\Delta f; \rho)$ in the Δf variable. Furthermore $S(\tau; \rho)$ and $A_c(\Delta f; \Delta t)$ are related by the double Fourier transform

$$S(\tau; \rho) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_c(\Delta f; \Delta t)e^{-j2\pi \rho \Delta t}e^{-j2\pi \tau \Delta f} d\Delta t d\Delta f.$$ \hspace{1cm} (3.58)

The relationships among the four functions $A_c(\Delta f; \Delta t)$, are shown in Figure 3.7

![Fourier Transform Relationships](image)

Figure 3.7: Fourier Transform Relationships

The scattering function is often used to approximate the delay spread, coherence bandwidth, Doppler spread, and coherence time. A common approximation for the delay spread T_m is the range of τ values over which $S(\tau; 0)$ is roughly nonzero. The coherence bandwidth is then approximated as $(\Delta f)_c = B_c \approx 1/T_m$.

60
Similarly, the Doppler spread B_d is approximated as the range of ρ values over which $S(0; \rho)$ is roughly nonzero, with the coherence time approximated as $T_c \approx 1/B_d$.

3.3.5 Envelope Correlation

For wideband signals the envelope correlation will depend on the delay power spectrum. If we assume an exponential delay profile with mean T_m, then the envelope correlation of two unit-power sinusoids separated by time τ and frequency Δf can be shown to equal [4]

$$A_r(\Delta f; \tau) = \frac{\Omega_p J_0^2(2\pi f_B \tau)}{2 + (2\pi \Delta f T_m)^2}.$$

(3.59)

Since any signal can be represented as a sum of sinusoids through its Fourier decomposition, (3.59) is used to determine the envelope correlation across the entire bandwidth B of the transmitted signal. In particular, as B increases above $1/T_m$, the fading across the signal bandwidth decorrelates. Conversely, for narrowband signals, $B \ll 1/T_m$, and thus (3.59) reduces to (3.25). Note that the coherence bandwidth of the channel can be obtained from (3.59) also: for $\tau = 0$ the frequency separation for which two sinusoids have a correlation coefficient less than 0.5 is $\Delta f > 1/T_m$.

3.4 Discrete-Time Model

![Point Scatterer Channel Model](image)

Figure 3.8: Point Scatterer Channel Model

Often the time-varying impulse response channel model is too complex for simple analysis. Turin’s discrete-time approximation for the wideband multipath model is commonly used for analysis of spread spectrum systems with RAKE receivers. This model is based on a physical propagation environment consisting of a composition of isolated point scatterers, as shown in Figure 3.8. In this model, the multipath components are assumed to form subpath clusters: incoming paths on a given subpath with approximate gross delay τ_i are combined, and incoming paths on different subpath clusters r_i and r_j with $|r_i - r_j| > 1/B$ can be resolved, where B denotes the signal bandwidth. The channel model of (3.7) is modified to include these subpath clusters as follows:

$$c(\tau; t) = \sum_{n=1}^{N} a_n(t) e^{j \theta_n(t)} \delta(t - r_n(t)).$$

(3.60)

The statistics of the received signal for a given τ are thus given by the statistics of N, $\{r_n\}_{1}^{N}$, $\{a_n\}_{1}^{N}$, and $\{\theta_n\}_{1}^{N}$. Turin simplified the model using a discrete time approximation as follows: For a fixed τ, the
time axis is divided into 70 equal intervals of duration 100 nsecs. The subpaths are restricted to lie in one of the \(r_i \) time interval bins, as shown in Figure 3.9. The total multipath spread is thus 70 \(\mu \)secs, and the resolution between paths is 100 nsecs. This resolution is based on the transmitted signal bandwidth.

The statistics for the ith bin are that \(r_n \) is binary (\(r_n = 1 \) if a subpath falls in the ith bin), and if \(r_n = 1, (a_n, \theta_n) \) follow an empirically determined distribution.

\[
\begin{align*}
(a_1, \theta_1) & & (a_2, \theta_2) & & (a_3, \theta_3) \\
'1 & & '2 & & '3 & & '4 & & '5 & & '6 & & '70 \\
0 & .1 & .2 & .3 & .4 & .5 & .6 & \cdots & 70 \mu \text{sec}
\end{align*}
\]

Figure 3.9: Discrete Time Approximation

This completes the statistical model for the discrete time approximation for a single snapshot. A sequence of profiles will model the signal over time as the channel impulse response changes, e.g. the impulse response seen by a receiver moving at some nonzero velocity through a city. Thus, the model must include both the first order statistics of \((N, r_n, a_n, \theta_n) \) for each profile (equivalently, each \(\tau \)), but also the temporal and spatial correlations (assumed Markov) between them. More details on the model and the empirically derived distributions for \((N, r_n, a_n, \theta_n) \) can be found in [3].

3.5 Spatio-Temporal Models

Multiple antennas at the transmitter and/or receiver are becoming very common in wireless systems, due to their diversity and capacity benefits. Systems with multiple antennas require channel models that characterize both spatial (angle of arrival) and temporal characteristics of the channel. A typical model assumes the channel is composed of several scattering centers which generate the multipath [19, 20]. The location of the scattering centers relative to the receiver dictate the angle of arrival (AOA) of the corresponding multipath components. Models can be either two dimensional or three dimensional.

Consider a two-dimensional multipath environment where the receiver or transmitter has an antenna array with \(M \) elements. The time-varying impulse response model (3.7) can be extended to incorporate AOA for the array as follows.

\[
c(\tau, t) = \sum_{n=0}^{N(t)} a_n(t) e^{-j\phi_n(t)} \bar{a}(\theta_n(t)) \delta(\tau - \tau_n(t)),
\]

(3.61)

where \(\phi_n(t) \) corresponds to the phase shift at the origin of the array and \(\bar{a}(\theta_n(t)) \) is the array response vector given by

\[
\bar{a}(\theta_n(t)) = [e^{-j\psi_{n,1}}, \ldots, e^{-j\psi_{n,M}}]^T,
\]

(3.62)

where \(\psi_{n,i} = [x_i \cos \theta_n(t) + y_i \sin \theta_n(t)]/2\pi/\lambda \) for \((x_i, y_i) \) the antenna location relative to the origin and \(\theta_n(t) \) the AOA of the multipath relative to the origin of the antenna array. Details for the distribution of the AOA for different propagation environments along with the corresponding correlations across antenna elements can be found in [20]

Extending the two dimensional models to three dimensions requires characterizing the elevation AOs for multipath as well as the azimuth angles. Different models for such 3-D channels have been proposed in [21, 22, 23]. In [19] the Jakes model is extended to produce spatio-temporal characteristics using the ideas of [21, 22, 23]. Several other papers on spatio-temporal modeling can be found in [24].
Bibliography

Chapter 4

Capacity of Wireless Channels

4.1 Introduction

The growing demand for wireless communication makes it important to determine the capacity limits of fading channels. These capacity limits dictate the maximum data rates that can be achieved without any constraints on delay or complexity. Channel capacity was pioneered by Claude Shannon in the late 1940s, where he developed a mathematical theory of communication based on the notion of mutual information between the input and output of a channel [6]. He defined capacity as the mutual information maximized over all possible input distribution. The significance of this mathematical construct was Shannon’s coding theorem and converse, which proved that a code did exist that could achieve a data rate close to capacity with negligible probability of error, and that any data rate higher than capacity could not be achieved without an error probability close to one. While Shannon’s theory seemed quite impractical at the time, given that he was predicting data rates of 30 Kbps on phone lines that at the time could only support about 100 bps, in time sophisticated modulation and coding technology validated Shannon’s theory such that today, we can achieve near-capacity rates on telephone lines. These sophisticated modulation and coding strategies are treated in Chapters 5 and 8, respectively.

In this chapter we examine the capacity of a single-user flat-fading channel. We first look at the case when there is no information about the channel fading at either the receiver or the transmitter. This is the “worst-case” scenario, and the capacity in severe fading conditions (e.g. Rayleigh fading) is zero under this assumption. We also examine the case where the channel fade level is estimated at the receiver (receiver side information) and the case where this estimate is fed back to the transmitter (transmitter and receiver side information). We show that the fading channel capacity with channel side information at both the transmitter and receiver is achieved when the transmitter adapts its power, data rate, and coding scheme to the channel variation. The optimal power allocation is a “water-pouring” in time, analogous to the water-pouring used to achieve capacity on frequency-selective fading channels [1, 2].

We will see that for i.i.d. fading, using receiver side information only has a lower complexity and the same approximate capacity as adapting to the channel. However, for correlated fading, not adapting at the transmitter causes both a decrease in capacity and an increase in encoding and decoding complexity. Although the adaptive method must transmit at a variable rate and power, the complexity of its decoding technique is comparable to the complexity of decoding a sequence of AWGN channels in parallel.

The tradeoff between adaptive and nonadaptive techniques is therefore one of both capacity and complexity. Assuming that the channel is estimated at the receiver, the adaptive technique requires a feedback path between the transmitter and receiver and some complexity in the transmitter. The
nonadaptive technique places a higher complexity burden on the encoding and decoding process: the code design must make use of the channel correlation statistics, and the decoder complexity is proportional to the channel decorrelation time. The adaptive technique always has a higher capacity, but the increase is small when the fading is approximately i.i.d. This same tradeoff is examined for practical transmission techniques in [3, 4], where the performance of variable-power variable-rate coded and uncoded MQAM in fading channels is obtained. It was found that a simple 4-state trellis code combined with adaptive modulation comes within 7 dB of the capacity derived herein, while the nonadaptive technique suffers a severe capacity penalty for any coding scheme with manageable complexity.

We do not treat the case when the channel fade level is unknown to both the transmitter and receiver but the fading statistics are known. Capacity under this assumption was obtained for the Gilbert-Elliot channel in [5] and for more general Markov channel models in [6]. If the statistics of the channel variation are also unknown, then channels with deep fading will typically have a capacity close to zero. This is because the data must be decoded without error, which is difficult when the location of deep fades are random. In particular, the capacity of a fading channel with arbitrary variation is at most the capacity of a time-invariant channel under the worst-case fading conditions. More details about the capacity of time-varying channels under these assumptions can be found in the literature on Arbitrarily Varying Channels [7, 8].

The remainder of this chapter is organized as follows. The next section describes the system model. The capacity of the fading channel under the different side information conditions is obtained in §4.3. Numerical calculation of these capacities in log-normal, Rayleigh, and Nakagami fading is given in §4.4. We conclude with a brief discussion of channel capacity in frequency-selective fading.

4.2 System Model

Consider a discrete-time channel with stationary and ergodic time-varying gain $\sqrt{g[i]}$, $0 \leq g[i]$, and additive white Gaussian noise (AWGN) $n[i]$. We assume that channel power gain $g[i]$ is independent of the channel input and has an expected value of unity. Let \mathcal{S} denote the average transmit signal power, N_0 denote the noise density of $n[i]$, and B denote the received signal bandwidth. The instantaneous received signal-to-noise ratio (SNR) is then $\gamma[i] = \mathcal{S}g[i]/(N_0B)$, and its expected value over all time is $\mathcal{S}/(N_0B)$.

The system model, which sends an input message w from the transmitter to the receiver, is illustrated in Figure 4.1. The message is encoded into the codeword x, which is transmitted over the time-varying channel as $x[i]$ at time i. The channel gain $g[i]$ changes over the transmission of the codeword. In the analysis below, we will consider three different scenarios: the channel power gain $g[i]$ is unknown to both transmitter and receiver (no estimation), $g[i]$ is known only to the receiver at time i, and $g[i]$ is known to both the receiver and transmitter at time i. The latter scenario allows the transmitter to adapt to the channel gain at time i, and is a reasonable model for a slowly-varying channel with channel estimation and transmitter feedback.

![Figure 4.1: System Model.](image-url)
4.3 Capacity Analysis

4.3.1 Capacity in AWGN

The capacity of an AWGN channel of bandwidth B and received SNR γ is given by Shannon’s well-known formula:

$$ C = B \log(1 + \gamma), \quad (4.1) $$

where \log is base 2 and the capacity units are bits/second (bps). Shannon’s coding theorem proves that a code exists that achieves data rates arbitrarily close to capacity with arbitrarily small probability of bit error. The converse theorem shows that any code with rate $R > C$ has a probability of error bounded away from zero.

The proofs of these two theorems places no constraints on the complexity or delay of the communication system. Therefore, Shannon capacity is generally used as an upper bound on the data rates that can be achieved under real system constraints. At the time that Shannon developed his theory of information, data rates over standard telephone lines were on the order of 100 bps. Thus, it was believed that Shannon capacity, which predicted speeds of roughly 30 Kbps over the same telephone lines, was not a very useful bound for real systems. However, recent breakthroughs in hardware, modulation, and coding techniques have brought commercial modems of today very close to the speeds predicted by Shannon in the 1950s. In fact, some commercial modems actually exceed this 30 Kbps limit, but that is because they use shorter transmission lines, which have a higher received power than that used in Shannon’s initial calculation. On AWGN radio channels, turbo codes have come within a fraction of a dB of the Shannon capacity limit [9].

Wireless channels typically exhibit flat or frequency-selective fading, and we would like to determine the capacity limits of channels under these propagation conditions. This chapter deals mainly with the flat-fading case. When the channel is flat-fading, we must also consider what is known about the fading, since this will clearly affect the channel capacity. In particular, if nothing is known about the fading then, for our system model, the capacity equals that of an AWGN channel under the worst-case fading conditions. When only the fading statistics are known it is difficult to derive the channel capacity. Closed-form expressions for channel capacity in this case are only known when the channel variation is Markov [6]. With side information of the channel fade level at the receiver only then, if the fading is i.i.d., it is simple to derive channel capacity. Similarly, the capacity when both the transmitter and receiver know the channel fade level is also given by a simple formula.

4.3.2 No Side Information

When nothing is known about the channel fading, the code design must work well regardless of the fading conditions. Thus, a code designed for the worst-case fading conditions will work under any fading conditions, since if fading is better than worst-case, the error probability will be reduced. However, since nothing is known about the fading, the only way to guarantee that the error probability is arbitrarily small is to assume worst-case fading. This argument sketches the proof that, without side information, the channel capacity is given by

$$ C = B \log(1 + \gamma_{\text{min}}), \quad (4.2) $$

where γ_{min} is defined as

$$ \gamma_{\text{min}} = \min_{\gamma; \gamma(\gamma) > 0} \gamma. \quad (4.3) $$
4.3.3 Side Information at the Transmitter and Receiver

Assume that the channel power gain $g[i]$ is known to both the transmitter and receiver at time i. The capacity of a time-varying channel with side information about the channel state at both the transmitter and receiver was originally considered by Wolfowitz for the following model. Let $c[i]$ be a stationary and ergodic stochastic process representing the channel state, which takes values on a finite set \mathcal{S} of discrete memoryless channels. Let C_s denote the capacity of a particular channel $s \in \mathcal{S}$, and $p(s)$ denote the probability, or fraction of time, that the channel is in state s. The capacity of this time-varying channel is then given by Theorem 4.6.1 of [10]:

$$ C = \sum_{s \in \mathcal{S}} C_s p(s). $$

(4.4)

We now consider the capacity of the fading channel shown in Figure 4.1. Specifically, assume an AWGN fading channel with stationary and ergodic channel gain $g[i]$. It is well known that a time-invariant AWGN channel with average received SNR γ has capacity $C_\gamma = B \log(1 + \gamma)$. Let $p(\gamma) = p(\gamma[i] = \gamma)$ denote the probability distribution of the received SNR. From (4.4) the capacity of the fading channel with transmitter and receiver side information is thus

$$ C = \int_\gamma C_\gamma p(\gamma) d\gamma = \int_\gamma B \log(1 + \gamma) p(\gamma) d\gamma. $$

(4.5)

By Jensen’s inequality, (4.5) is always less than the capacity of an AWGN channel with the same average power. Suppose now that we also allow the transmit power $S(\gamma)$ to vary with $\gamma[i]$, subject to an average power constraint \overline{S}:

$$ \int_\gamma S(\gamma) p(\gamma) d\gamma \leq \overline{S}. $$

(4.6)

With this additional constraint, we cannot apply (4.5) directly to obtain the capacity. However, we expect that the capacity with this average power constraint will be the average capacity given by (4.5) with the power optimally distributed over time. This motivates the following definition for the fading channel capacity, for which we subsequently state the channel coding theorem and converse. The proofs of these theorems can be found in [11].

Definition Given the average power constraint (4.6), define the time-varying channel capacity by

$$ C(\overline{S}) = \max_{S(\gamma) : \int S(\gamma) p(\gamma) d\gamma = \overline{S}} \int_\gamma B \log \left(1 + \frac{S(\gamma) \gamma}{\overline{S}} \right) p(\gamma) d\gamma. $$

(4.7)

Coding Theorem: There exists a coding scheme with average power \overline{S} that achieves rate $C(\overline{S})$ with arbitrarily small probability of error.

Converse: Any coding scheme with rate $R > C(\overline{S})$ and average power \overline{S} will have a probability of error bounded away from zero.

It is easily shown using Lagrangian multipliers to solve the maximization in (4.7) that the optimal power adaptation is

$$ \frac{S(\gamma)}{\overline{S}} = \begin{cases} \frac{1}{\overline{S}} - \frac{1}{\gamma} & \gamma \geq \gamma_0 \\ 0 & \gamma < \gamma_0 \end{cases} $$

(4.8)

1 Wolfowitz’s result was for γ ranging over a finite set, but it can be extended to infinite sets [11].

68
for some “cutoff” value γ_0. If $\gamma[i]$ is below this cutoff then no data is transmitted over the ith time interval. Since γ is time-varying, the maximizing power adaptation policy of (4.8) is a “water-pouring” formula in time [1] that depends on the fading statistics $p(\gamma)$ only through the cutoff value γ_0.

Substituting (4.8) into (4.6), we see that γ_0 must satisfy

$$\int_{\gamma_0}^{\infty} \left(\frac{1}{\gamma_0} - \frac{1}{\gamma} \right) p(\gamma) d\gamma = 1. \quad (4.9)$$

Substituting (4.8) into (4.7) then yields a closed-form capacity formula:

$$C(\gamma) = \int_{\gamma_0}^{\infty} B \log \left(\frac{\gamma}{\gamma_0} \right) p(\gamma) d\gamma. \quad (4.10)$$

The channel coding and decoding that achieves this capacity is described in [11], but the main idea is a “time diversity” system with multiplexed input and demultiplexed output, as shown in Figure 4.2. Specifically, we first quantize the range of fading values to a finite set $\{\gamma_j : 1 \leq j \leq N\}$. For each γ_j, we design an encoder/decoder pair with codewords x_j of average power $S(\gamma_j)$ which achieve rate $R_j \approx C_j$, where C_j is the capacity of a time-invariant AWGN channel with received SNR $S(\gamma_j)\gamma_j/\mathcal{S}$. These encoder/decoder pairs correspond to a set of input and output ports associated with each γ_j. When $\gamma[i] \approx \gamma_j$, the corresponding pair of ports are connected through the channel. The codewords associated with each γ_j are thus multiplexed together for transmission, and demultiplexed at the channel output. This effectively reduces the time-varying channel to a set of time-invariant channels in parallel, where the jth channel only operates when $\gamma[i] \approx \gamma_j$. The average rate on the channel is just the sum of rates associated with each of the γ_j channels weighted by $p(\gamma_j)$. This sketches the proof of the coding theorem in [11]. The converse theorem that no other coding scheme can achieve a higher rate can also be found in [11].

4.3.4 Side Information at the Receiver

In [12] it was shown that if the channel variation satisfies a compatibility constraint then the capacity of the channel with side information at the receiver only is also given by the average capacity formula (4.4). The compatibility constraint is satisfied if the channel state sequence is i.i.d. and if the input distribution that maximizes mutual information is the same regardless of the channel state. In this case, the side information at the transmitter does not increase capacity, as we now show.
If \(g[k] \) is known at the receiver then by scaling, the fading channel with power gain \(g[k] \) is equivalent to an AWGN channel with noise power \(N_0 B / g[k] \). If the transmit power is fixed at \(\bar{S} \) and \(g[k] \) is i.i.d. then the input distribution at time \(i \) which achieves capacity is an i.i.d. Gaussian distribution with average power \(\bar{S} \). Thus, without power adaptation, the i.i.d. fading channel satisfies the compatibility constraint of [12]. The capacity of this channel with receiver side information only is thus given by

\[
C(S) = \int B \log(1 + \gamma)p(\gamma)d\gamma. \tag{4.11}
\]

Comparing (4.11) with (4.5) we see that without power adaptation, transmitter side information does not increase capacity; because the transmitter uses the same optimal input distribution regardless of the channel state, it need not adapt its strategy to the channel variation.

However, most physical channels exhibit correlated fading. If the fading is not i.i.d. then (4.11) is only an upper bound to channel capacity\(^2\). In addition, without transmitter side information, the code design must incorporate the channel correlation statistics, and the complexity of the maximum likelihood decoder will be proportional to the channel decorrelation time. Thus, for channels with correlated fading, adaptive transmission has both a higher capacity and a lower complexity.

4.3.5 Channel Inversion

We now consider a suboptimal transmitter adaptation scheme where the transmitter uses the channel side information to maintain a constant received power, i.e., it inverts the channel fading. The channel then appears to the encoder and decoder as a time-invariant AWGN channel. The power adaptation for channel inversion is given by \(S(\gamma)/\bar{S} = \sigma/\gamma \), where \(\sigma \) equals the constant received SNR which can be maintained under the transmit power constraint (4.6). The constant \(\sigma \) thus satisfies \(\int \frac{\sigma}{\gamma} p(\gamma)d\gamma = 1 \), so \(\sigma = 1/\mathbb{E}[1/\gamma] \).

The fading channel capacity with channel inversion is just the capacity of an AWGN channel with SNR \(\sigma \):

\[
C(S) = B \log [1 + \sigma] = B \log \left[1 + \frac{1}{\mathbb{E}[1/\gamma]} \right]. \tag{4.12}
\]

Channel inversion is common in spread spectrum systems with near-far interference imbalances [13]. It is also the simplest scheme to implement, since the encoder and decoder are designed for an AWGN channel, independent of the fading statistics. However, it can exhibit a large capacity penalty in extreme fading environments. For example, in Rayleigh fading \(\mathbb{E}[1/\gamma] \) is infinite, and thus the capacity with the channel inversion policy (4.12) is zero.

We also consider a truncated inversion policy that only compensates for fading above a certain cutoff fade depth \(\gamma_0 \):

\[
\frac{S(\gamma)}{\bar{S}} = \begin{cases} \frac{\sigma}{\gamma} & \gamma \geq \gamma_0 \\ 0 & \gamma < \gamma_0 \end{cases} \tag{4.13}
\]

Since the channel is only used when \(\gamma \geq \gamma_0 \), the power constraint (4.6) yields \(\sigma = 1/\mathbb{E}_{\gamma_0}[1/\gamma] \), where

\[
\mathbb{E}_{\gamma_0}[1/\gamma] \triangleq \int_{\gamma_0}^{\infty} \frac{1}{\gamma} p(\gamma)d\gamma. \tag{4.14}
\]

For decoding this truncated policy, the receiver must know when \(\gamma < \gamma_0 \). The capacity in this case, obtained by maximizing over all possible \(\gamma_0 \), is

\[
C(S) = \max_{\gamma_0} B \log \left[1 + \frac{1}{\mathbb{E}_{\gamma_0}[1/\gamma]} \right] p(\gamma \geq \gamma_0). \tag{4.15}
\]
Alternatively, we can set γ_0 in (4.15) to obtain a particular outage probability $P_{out} = p(\gamma < \gamma_0)$.

4.4 Numerical Results

Figures 4.3, 4.4, and 4.5 show plots of (4.7), (4.11), (4.12), and (4.15) as a function of average received SNR for log-normal fading (8 dB standard deviation), Rayleigh fading, and Nakagami fading (with Nakagami parameter $m = 2$). The capacity in AWGN for the same average power is also shown for comparison. Several observations are worth noting. First, in all cases the capacity of the AWGN channel is larger, so fading reduces channel capacity. The severity of the fading is indicated by the Nakagami parameter m, where $m = 1$ for Rayleigh fading and $m = \infty$ for an AWGN channel without fading. Thus, comparing Figures 4.4 and 4.5 we see that, as the severity of the fading decreases (m goes from one to two), the capacity difference between the various adaptive policies also decreases, and their respective capacities approach that of the AWGN channel.

![Figure 4.3: Capacity in Log-Normal Fading.](image)

![Figure 4.4: Capacity in Rayleigh Fading ($m = 1$).](image)

The difference between the capacity curves (4.7) and (4.11) are negligible in all cases. Recalling that (4.11) and (4.5) are the same, this implies that when the transmission rate is adapted relative to the channel, adapting the power as well yields a negligible capacity gain. It also indicates that for i.i.d. fading, transmitter adaptation yields a negligible capacity gain relative to using only receiver side
information. We also see that in severe fading conditions (Rayleigh and log-normal fading), truncated channel inversion exhibits a 1-5 dB rate penalty and channel inversion without truncation yields a very large capacity loss. However, under mild fading conditions (Nakagami with \(m = 2 \)) the capacity of all the adaptation techniques are within 3 dB of each other and within 4 dB of the AWGN channel capacity. These differences will further decrease as the fading diminishes \((m \to \infty) \).

We can view these results as a tradeoff between capacity and complexity. The adaptive policy with transmitter side information requires more complexity in the transmitter (and it typically also requires a feedback path between the receiver and transmitter to obtain the side information). However, the decoder in the receiver is relatively simple. The nonadaptive policy has a relatively simple transmission scheme, but its code design must use the channel correlation statistics (often unknown), and the decoder complexity is proportional to the channel decorrelation time. The channel inversion and truncated inversion policies use codes designed for AWGN channels, and are therefore the least complex to implement, but in severe fading conditions they exhibit large capacity losses relative to the other techniques.

In general, Shannon capacity analysis does not show how to design adaptive or nonadaptive techniques for real systems. Achievable rates for adaptive trellis-coded MQAM have been investigated in [15], where a simple 4-state trellis code combined with adaptive six-constellation MQAM modulation was shown to achieve rates within 7 dB of the capacity (4.7) in Figures 4.3 and 4.4. More complex codes further close the gap to the Shannon limit of fading channels with transmitter adaptation.

4.5 Fading Channels with Transmitter and Receiver Diversity

Receiver diversity is a well-known technique to improve the performance of wireless communications in fading channels. The main advantage of receiver diversity is that it mitigates the fluctuations due to fading so that the channel appears more like an AWGN channel. More details on receiver diversity and its performance will be given in Chapter 8. Since receiver diversity mitigates the impact of fading, an interesting question is whether it also increases the capacity of a fading channel. The capacity calculation under diversity combining first requires that the distribution of the received SNR \(p(\gamma) \) under the given diversity combining techniques be obtained. Once this distribution is known it can be substituted into any of the capacity formulas (4.10), (4.11), (4.12) or (4.13) above to obtain the capacity under diversity combining. The specific capacity formula used depends on the assumptions about channel side information, e.g., for the case of perfect transmitter and receiver CSI the formula (4.10) would be used. Capacity under
both maximal ratio and selection combining diversity for these different capacity formulas was computed in [18]. It was found that, as expected, the capacity with perfect transmitter and receiver CSI is bigger than with receiver CSI only, which in turn is bigger than with channel inversion. The performance gap of these different formulas decreases as the number of antenna branches increases. This trend is expected, since a large number of antenna branches makes the channel look like AWGN, for which all of the different capacity formulas have roughly the same performance.

Recently there has been much research activity on systems with multiple antennas at both the transmitter and the receiver. The excitement in this area stems from the breakthrough results in [20, 19, 21] indicating that the capacity of a fading channel with multiple inputs and outputs (a MIMO channel) is n times larger than the channel capacity without multiple antennas, where $n = \min(n_t, n_r)$ for n_t the number of transmit antennas and n_r the number of receive antennas. The capacity formula is obtained by first taking the singular value decomposition of the $n_t \times n_r$ channel matrix H, where h_{ij} defines the path gain between the ith transmit and jth receive antenna. The rank of H is equal to n, so the singular value decomposition effectively results in n independent channels, with total capacity equal to the sum of capacities on each channel. That is why the capacity of the MIMO channel is a factor of n larger than the channel without antenna diversity. This promise of enhanced capacity has led to large-scale developments in industry for MIMO systems, including Lucent’s BLAST system. However, these capacity results assume perfect knowledge of the matrix H, which is unrealistic in practice. Recent work has addressed capacity of MIMO channels with imperfect channel information or receiver information only: more details on this work can be found in [22, 23, 24].

4.6 Frequency-Selective Fading Channels

It is difficult to determine the capacity of frequency-selective fading, due to the random effects of self-interference (ISI). In the case of transmitter and receiver side information, the optimal adaptation scheme must consider the effect of the channel on the past sequence of transmitted bits, and how the ISI resulting from these bits will affect future transmissions [17]. The capacity formulas and their corresponding coding and converse theorems become much more complex than in the flat-fading case.

For our purposes we will use a simple approximation for channel capacity in frequency-selective fading. We take the channel bandwidth B of interest and divide it up into pieces the size of the channel coherence bandwidth B_c, as shown in Figure 8.25. We then assume that each of the resulting subchannels is independent, with a power gain α_i^2. This is a common assumption for frequency-selective fading channels. Under this assumption, we can obtain the capacity for each of these narrowband channels based on the power P_i that we allocate to each subchannel, subject to a total power constraint P. If the channels are AWGN channels with no fading, or if the fading on each subchannel is constant over a very long period, then the total capacity of the channel (assuming constant gains α_i^2) is given by

$$C = \max_{\{P_i\}} \sum_i B_c \log \left(1 + \frac{\alpha_i^2 P_i}{N_0 B_c}\right).$$

The optimal power allocation is obtained using simple Lagrangian techniques, similar to the optimal power allocation in fading, resulting in a water-filling power allocation

$$\frac{P_i}{P} = \begin{cases} \frac{1}{\gamma_i} - \frac{1}{\gamma_0} & \gamma_i \geq \gamma_0 \\ 0 & \gamma_i < \gamma_0 \end{cases}$$

for some cutoff value γ_0, where $\gamma_i = \alpha_i^2 P_i / (N_0 B)$. The cutoff value is obtained by substituting the power
adaptation formula into the power constraint. The capacity then becomes

\[C = \sum_{i=1(\gamma_i \geq \gamma_0)}^{N} B_c \log(\gamma_i / \gamma_0). \] (4.18)

When the subchannels experience flat fading then we obtain the capacity of each subchannel using the analysis in Chapter 4.3, under the given side information conditions. Since the channels are independent, the total channel capacity is just equal to the sum of capacities on the individual narrowband flat-fading channels:

\[C = \max_{\{P_i\}} \sum_i C_i(P_i), \] (4.19)

where \(C_i(P_i) \) is the capacity of the flat-fading subchannel with average power \(P_i \) given by (4.10), (4.11), (4.12), or (4.15), depending on the side information and adaptivity assumptions. The optimal power allocation for perfect transmitter and receiver side information, where the \(i \)th subchannel has capacity given by (4.10) is solved via a two-dimensional Lagrangian optimization. The resulting optimal power allocation has the same form as the AWGN case:

\[\frac{P_i}{P_i^{\text{opt}}} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma_i} & \gamma_i \geq \gamma_0 \\ 0 & \gamma_i < \gamma_0 \end{cases}, \] (4.20)

except that now \(\gamma_i \) represents the instantaneous fading on the \(i \)th subchannel and the cutoff value is obtained based on the fading statistics to satisfy the average power constraint

\[\sum_i \int_{\gamma_0}^{\infty} \left(\frac{1}{\gamma_0} - \frac{1}{\gamma_i} \right) p(\gamma_i) d\gamma_i = 1. \] (4.21)

![Figure 4.6: Channel Division in Frequency-Selective Fading](image)

Figure 4.6: Channel Division in Frequency-Selective Fading
Bibliography

Chapter 5

Digital Modulation

The advances over the last thirty years in hardware and digital signal processing have made digital transceivers much cheaper, faster, and more power-efficient than analog transceivers. More importantly, digital modulation offers a number of other advantages over analog modulation, including higher data rates, powerful error correction techniques, resistance to channel impairments, more efficient multiple access strategies, and better security and privacy. Specifically, high level modulation techniques such as MQAM allow higher data rates in digital modulation as compared to analog modulation with the same signal bandwidth. Advances in coding and coded-modulation applied to digital signaling make the signal much less susceptible to noise and Rayleigh fading, and equalization can be used to remove multipath impairments. Spread spectrum techniques applied to digital modulation can be used to remove or combine multipath, resist interference, and detect multiple users simultaneously. Finally, digital modulation is much easier to encrypt, resulting in a higher level of security and privacy for digital systems. For all these reasons, systems currently being built or proposed for wireless and personal communication applications are all digital systems.

Digital modulation consists of mapping symbols into waveforms for transmission over a given channel. The main considerations in choosing a particular digital modulation technique are

- high data rate
- high spectral efficiency (minimum bandwidth occupancy)
- high power efficiency (minimum required transmit power)
- robustness to channel impairments
- robustness to hardware impairments
- low power/cost implementation

Often these are conflicting requirements, and the choice of modulation is based on finding the technique that achieves the best tradeoff between these requirements.

There are two types of digital modulation: linear and nonlinear. Since nonlinear techniques typically have a constant signal envelope, they are also called constant envelope techniques. Linear modulation generally has better spectral properties than nonlinear modulation, since nonlinear processing leads to spectral broadening. However, most linear modulation techniques do not have a constant signal envelope, and even those that do (e.g. MPSK) typically use pulse shaping to improve the spectral properties, which makes the signal envelope nonconstant. Modulation with a nonconstant envelope is more susceptible to amplitude variations from fading and interference. In addition, it is preferable to use nonlinear amplifiers, since they are cheap and easy to build. However, such amplifiers are not efficient for nonconstant envelope modulation, since the amplifier operating point must be significantly lower than the region where the
amplifier becomes nonlinear, otherwise the amplitude is distorted by the amplifier nonlinearity. Thus, the general tradeoff of linear versus nonlinear modulation is one of better spectral efficiency for the former technique and better power efficiency for the latter technique. Once the modulation technique is determined, the constellation size must be chosen. Modulations with large constellations have higher data rates, but are more susceptible to noise, fading, and hardware impairments.

We begin this chapter with a general discussion of signal space concepts. These concepts greatly simplify the design and analysis of modulation and demodulation techniques by mapping infinite-dimensional signals to a finite-dimensional vector-space. The general principles of signal space analysis will then be applied to the analysis of linear techniques. Linear modulation include pulse amplitude modulation (PAM), phase-shift keying (PSK), and quadrature amplitude modulation (QAM), while frequency shift keying (FSK) and minimum-shift keying (MSK) are nonlinear modulation techniques. Both types of modulation and their spectral properties will be discussed.

5.1 Signal Space Analysis

Digital modulation encodes a bit stream of finite length into one of several possible transmitted signals. Intuitively, the receiver minimizes the probability of bit error by decoding the received signal as the signal in the set of possible transmitted signals that is “closest” to the one received. Determining the distance between the transmitted and received signals requires a distance metric for signal space. By representing signals as projections onto a set of basis functions, we obtain a one-to-one correspondence between the set of transmitted signals and their vector representations. Thus, we can analyze signals in finite-dimensional vector space instead of infinite-dimensional signal space, using classical notions of distance for vector spaces. In this section we show how digitally modulated signals can be represented as vectors in an appropriately-defined vector space, and how optimal demodulation methods can be obtained from this vector space representation. This general analysis will then be applied to specific modulation techniques in later sections.

5.1.1 System Model

Consider the communication system model shown in Figure 5.1.1. We assume an additive white Gaussian noise (AWGN) channel model, so the channel has impulse response \(h(t) = \delta(t) \) and stationary white noise \(n(t) \) with mean zero and power spectral density \(N_0/2 \) is added to the transmitter signal to form the received signal. Every \(T \) seconds, the system selects a message \(m_i \) from set \(\mathcal{M} = \{m_1, \ldots, m_M\} \) to transmit over the channel. The messages have probability \(p_i \) of being selected for transmission, where \(\sum_i p_i = 1 \). Since there are \(M \) different messages in \(\mathcal{M} \), each transmitted message conveys \(\log_2 M \) bits of information. Thus, the transmitter sends \(\log_2 M \) bits over the channel every \(T \) seconds for a data rate of \(R = \log_2 M/T \) bits per second (bps). The \(\log_2 M \) bits corresponding to the message \(m_i \) are encoded into an analog signal \(s_i(t) \in \mathcal{S} = \{s_1(t), \ldots, s_M(t)\} \) with energy

\[
E_i = \int_T s_i^2(t)dt, \quad i = 1, \ldots, M.
\]

Thus, the transmitted signal is given by \(\sum_k s_i(t - kT) \), where \(s_i(t) \) is the analog signal corresponding to the message signal \(m_i \) designated for the transmission interval \([kT, (k + 1)T] \).

The received signal corresponding to the message signal \(m_i \) over time interval \([kT, (k + 1)T] \) is \(x(t) = \sum_k s_i(t - kT) + n(t) \). For each transmitted signal \(s_i(t - kT) \), the receiver must determine the best estimate of which \(s_i(t) \in \mathcal{S} \) was transmitted (equivalently, which \(m_i(t) \in \mathcal{M} \) was transmitted) given
received signal $x(t)$. Specifically, the receiver must minimize the probability of symbol error

$$P_e = \sum_{i=1}^{M} p_i P(m \neq m_i | m_i \text{ sent}),$$ \hspace{1cm} (5.2)$$
over each time interval $[kT, (k+1)T)$. By representing the signals $\{s_i(t)\}$ geometrically, we can solve for the optimal receiver design in AWGN based on a minimum distance criterion. Note that, as we saw in previous chapters, the channel impulse response is generally not a delta function. We will consider the effect of an arbitrary channel impulse response on digital modulation performance in Section 6.6, and methods to combat this performance degradation in Chapters 10-12.

5.1.2 Basis Function Representation

The basic premise behind a signal space representation of signals is the notion of a basis set. Specifically, using a Gram-Schmidt orthogonalization procedure [2, 3], it can be shown that any set of M real energy signals $S = (s_1(t), \ldots, s_M(t))$ defined on $[0, T]$ can be represented as a linear combination of $N \leq M$ orthonormal basis functions $\{\phi_1(t), \ldots, \phi_N(t)\}$. Thus, we can write each $s_i(t) \in S$ as

$$s_i(t) = \sum_{j=1}^{N} s_{ij} \phi_j(t), \hspace{1cm} 0 \leq t < T,$$ \hspace{1cm} (5.3)$$
where

$$s_{ij} = \int_0^T s_i(t) \phi_j(t) dt,$$ \hspace{1cm} (5.4)$$
is a real coefficient representing the projection of $s_i(t)$ onto the basis function $\phi_j(t)$ and

$$\int_0^T \phi_i(t) \phi_j(t) dt = \left\{ \begin{array}{ll} 1 & i = j \\ 0 & i \neq j \end{array} \right.$$ \hspace{1cm} (5.5)$$

If the functions $\{s_i(t)\}$ are linearly independent then $N = M$, otherwise $N < M$. For most modulation techniques used in practice, the basis set consists of two functions ($N = 2$) corresponding to the in-phase and quadrature dimensions of the transmitted signal.

We denote the coefficients $\{s_{ij}\}$ as a vector $s_i = (s_{i1}, \ldots, s_{iN})$. Given the basis functions $\{\phi_1(t), \ldots, \phi_N(t)\}$ there is a one-to-one correspondence between the signal $s_i(t)$ and its vector representation s_i. Specifically, $s_i(t)$ can be obtained from s_i by (5.3) and s_i can be obtained from $s_i(t)$ from (5.4). Note that $s_i \in \mathcal{R}^N$, and we call \mathcal{R}^N the signal space, with the ith axis of \mathcal{R}^N corresponding to the basis function $\phi_i(t)$. The vector s_i is called the signal constellation corresponding to the message m_i. Signal constellations for common modulation techniques like MPSK and MQAM are two-dimensional (corresponding to the in-phase and quadrature basis functions). and will be given later in the chapter. Since there is a one-to-one correspondence between $s_i(t)$ and s_i, we can characterize and analyze signals and noise in finite-dimensional vector space instead of infinite-dimensional signal space. This greatly simplifies the analysis of the system performance as well as the derivation of the optimal receiver design.
Before proceeding with converting the system model in Figure 5.1.1 to a vector model, we require a few definitions for vector characterization in the signal space \mathbb{R}^N. The length of a vector in signal space is defined as

$$
\|s_i\|^2 = s_i^T s_i = \sum_{k=1}^{N} s_{ik}^2.
$$

(5.6)

The square root of this length, $\|s_i\|$, is called the vector norm. The distance between two vectors s_i and s_j is thus

$$
\|s_i - s_j\|^2 = \sum_{k=1}^{N} (s_{ik} - s_{jk})^2 = \int_0^T (s_i(t) - s_j(t))^2 dt,
$$

(5.7)

where the second equality is obtained by writing $s_i(t)$ and $s_j(t)$ in their basis representation (5.3) and using the orthonormal properties of the basis functions. Finally, we define the inner product $\langle s_i(t), s_j(t) \rangle$ between two real signals $s_i(t)$ and $s_j(t)$ on the interval $[0, T]$ as

$$
\langle s_i(t), s_j(t) \rangle = \int_0^T s_i(t) s_j(t) dt.
$$

(5.8)

Similarly, we define the inner product $\langle s_i, s_j \rangle$ between two real vectors as

$$
\langle s_i, s_j \rangle = s_i^T s_j = \int_0^T s_i(t) s_j(t) dt = \langle s_i(t), s_j(t) \rangle,
$$

(5.9)

where the equality between the vector inner product and the corresponding signal inner product follows from the basis representation of the signals (5.3) and the orthonormal property of the basis functions (5.5). We say that two signals are orthogonal if their inner product is zero. Thus, by (5.5), the basis functions are orthogonal functions.

5.1.3 Receiver Design and Sufficient Statistics

Given the channel output $x(t) = s_i(t) + n(t), 0 \leq t < T$, we now investigate the receiver design to determine which m_i (equivalently, which $s_i(t)$) was sent over the time interval $[0, T]$. A similar procedure is done for each time interval $[kT, (k+1)T]$.

Consider the receiver structure shown in Figure 5.2, where

$$
s_{ij} = \int_0^T s_i(t) \phi_j(t) dt,
$$

(5.10)

and

$$
n_j = \int_0^T n(t) \phi_j(t) dt.
$$

(5.11)

We can rewrite $x(t)$ as

$$
\sum_{j=1}^{N} (s_{ij} + n_j) \phi_j(t) + n_r(t) = \sum_{j=1}^{N} x_j \phi_j(t) + n_r(t),
$$

(5.12)

where $x_j = s_{ij} + n_j$ and $n_r(t) = n(t) - \sum_{j=1}^{N} n_j \phi_j(t)$ denotes the “remainder” noise. The receiver makes its estimate \hat{m} of the transmitted message m_i as a function of x_1, \ldots, x_N. Thus, the receiver throws away any information in the remainder noise term $n_r(t)$, which is the component of the noise orthogonal to the signal space (the space spanned by the basis set $(\phi_1(t), \ldots, \phi_N(t))$). If we can show that $n_r(t)$ is not useful in detecting which $s_i(t)$ was sent, then we need only determine the optimal receiver for (x_1, \ldots, x_N).
Figure 5.2: Receiver Structure for Signal Detection in AWGN.

since this contains all the needed information for optimal detection of $s_i(t)$ given $x(t)$. In other words, (x_1, \ldots, x_N) would be a sufficient statistics for detecting $s_i(t)$.

Since $n(t)$ is a Gaussian random process, the channel output $x(t) = s_i(t) + n(t)$ is also a Gaussian random process and the vector (x_1, \ldots, x_N) is a Gaussian random vector. Recall that $x_j = s_{ij} + n_j$. Thus,

$$\mu_{x_j} = E[x_j] = E[s_{ij} + n_j] = s_{ij}$$ \hspace{1cm} (5.13)

since $n(t)$ has zero mean, and

$$\sigma_{x_j} = E[x_j - \mu_{x_j}]^2 = E[(s_{ij} + n_j - s_{ij})^2] = E[n_j^2].$$ \hspace{1cm} (5.14)

We have

$$\text{Cov}[x_j, x_k] = E[(x_j - \mu_{x_j})(x_k - \mu_{x_k})] = E[n_j n_k]$$

$$= E \left[\int_0^T n(t) \phi_j(t) dt \int_0^T n(\tau) \phi_k(\tau) d\tau \right]$$

$$= \int_0^T \int_0^T E[n(t)n(\tau)] \phi_j(t) \phi_k(\tau) dt d\tau$$

$$= \int_0^T \int_0^T 2 \delta(t-\tau) \phi_j(t) \phi_k(\tau) dt d\tau$$

$$= \frac{N_0}{2} \phi_j(t) \phi_k(t) dt$$

$$= \begin{cases} N_0/2 & i = j \\ 0 & i \neq j \end{cases}$$ \hspace{1cm} (5.15)

where the last equality follows from the orthogonality of the basis functions. Thus, the x_is are uncorrelated and, since they are Gaussian, they are also independent. Moreover $E[n_j^2] = N_0/2$.

81
Let us define the random vector corresponding to the correlator outputs as \(x = [x_1, \ldots, x_N] \), where given that the message \(m_i \) is transmitted we have that \(x_i \) is Gauss-distributed with mean \(s_{ij} \) and variance \(N_0/2 \). Thus, by the independence of the \(x_i \)'s,
\[
p(x|m_i) = \prod_{j=1}^{N} p(x_j|m_i) = \frac{1}{(\pi N_0)^{N/2}} \exp \left[-\frac{1}{N_0} \sum_{j=1}^{N} (x_j - s_{ij})^2 \right].
\]

It is straightforward to show that \(E[x_j n_r(t_k)] = 0 \) for any \(t_k : 0 \leq t_k < T \). Since any random process is completely characterized by its complete set of time samples, we have that \(x_j \) is independent of any function of the remainder noise process \(n_r(t) \). Also, since the transmitted signal is independent of the noise, \(s_{ij} \) is independent of the process \(n_r(t) \).

The goal of the receiver design is to minimize the probability of error in detecting the transmitted message \(m_i \) given received signal \(x(t) \). To minimize \(P_e = p(\hat{m} \neq m_i|x(t)) = 1 - p(\hat{m} = m_i|x(t)) \) we can maximize \(p(\hat{m} = m_i|x(t)) \). Therefore, the receiver output \(\hat{m} \) given received signal \(x(t) \) should correspond to the message \(m_i \) that maximizes \(p(m_i|\text{sent}|x(t)) \). Recalling that \(x(t) \) is completely described by \(x = (x_1, \ldots, x_N) \) and \(n_r(t) \), and that the decision of which message was transmitted must be a function \(f[n_r(t)] \) of the remainder noise process, we have
\[
p(m_i \text{ sent}|x(t)) = \frac{p((s_{i1}, \ldots, s_{iN}) \text{ sent}|(x_1, \ldots, x_N, f[n_r(t)]))}{p((s_{i1}, \ldots, s_{iN}) \text{ sent}, (x_1, \ldots, x_N), f[n_r(t)])}
\]
\[
= \frac{p((s_{i1}, \ldots, s_{iN}) \text{ sent}, (x_1, \ldots, x_N), f[n_r(t)])}{p((s_{i1}, \ldots, s_{iN}) \text{ sent}, (x_1, \ldots, x_N))p(f[n_r(t)])}
\]
\[
= \frac{p((s_{i1}, \ldots, s_{iN}) \text{ sent}|(x_1, \ldots, x_N))}{p(f[n_r(t)])},
\]

where the third equality follows from the fact that any function of the remainder noise process is independent of both \((x_1, \ldots, x_N)\) and of \((s_{i1}, \ldots, s_{iN})\). This analysis shows that \((x_1, \ldots, x_N)\) is a **sufficient statistic** for \(x(t) \) in detecting \(m_i \), in the sense that the probability of detection error is minimized using this sufficient statistic.

5.1.4 Maximum Likelihood Decision Criterion

We saw in the previous subsection that the detection error probability is minimized if the detector output \(\hat{m} \) is selected to maximize \(1 - P_e = p(\hat{m} \text{ sent}|x) \). By Bayes rule,
\[
p(\hat{m} \text{ sent}|x) = \frac{p(x|\hat{m} \text{ sent})p(\hat{m} \text{ sent})}{p(x)}.
\]

Assuming equally likely messages \((p(m_i) = 1/M)\), \(\hat{m} \) is set to the argument that maximizes \(p(x|\hat{m}) \):
\[
\hat{m} = \arg \max_{m_i} p(x|m_i), i = 1, \ldots, M.
\]

Let us define the likelihood function associated with our receiver as
\[
L(m_i) = p(x|m_i \text{ sent}).
\]
In a maximum likelihood receiver \hat{m} is set to the argument that maximizes $L(m_i)$. Since the log function is increasing in its argument, maximizing $L(m_i)$ is equivalent to maximizing the log likelihood function, defined as
\[
l(m_i) = \log L(m_i) = -\frac{1}{N_0} \sum_{j=1}^N (x_j - s_{ij})^2,
\]
where the second equality follows by substituting in (5.16) for $L(m_i)$. Note that the log likelihood function depends only on the distance between the received vector x and the set of transmit signal constellation points $s_i, i = 1, \ldots, M$.

Thus, the maximum likelihood receiver computes x from $x(t)$ using the structure shown in Figure 5.2 and then decodes
\[
\hat{m} = \arg \max_{m_i} l(m_i).
\]
Equivalently, we can find the signal constellation corresponding to the maximizing message signal m_i in (5.23) as
\[
\arg \max_{s_i} -\frac{1}{N_0} \sum_{j=1}^N (x_j - s_{ij})^2 = \arg \max_{s_i} -\frac{1}{N_0} ||x - s_i||^2.
\]
The maximizing argument is the signal constellation point s_i that is closest to the received vector x, which is intuitively satisfying. The maximum likelihood receiver structure is very simple to implement since the decision criterion depends only on vector distances in signal space. This structure also minimizes the probability of error when the transmitted messages are equally likely. For messages that are not equally likely the minimum distance decoding criterion is not sufficient to minimize error probability since the apriori message probabilities skews this probability, as indicated in (5.19).

The maximum likelihood receiver decodes the message m_i corresponding to the signal constellation $s_i, i = 1, \ldots, M$ closest to the received vector x. We can divide the signal space into M decision regions
\[
Z_i = (x : ||x - s_i|| < ||x - s_j|| \ \forall j = 1, \ldots, M, j \neq i) \quad i = 1, \ldots, M.
\]
Then ML decoding only entails finding the decision region Z_i in which the received vector x lies, i.e. $x \in Z_i \rightarrow \hat{m} = m_i$. Thus, the function $f(x) = f(x_1, \ldots, x_N)$ in Figure 5.2 is given by $\hat{m} = m_i : x \in Z_i$. It is easily shown that Figure 5.2 is equivalent to the matched filter receiver shown in Figure 5.3.

5.1.5 Error Probability and the Union Bound

We now analyze the error probability associated with the ML receiver structure. For equally likely messages $p(m_i \text{ sent}) = 1/M$ we have
\[
P_e = \sum_{i=1}^M p(x \notin Z_i | m_i \text{ sent}) p(m_i \text{ sent})
\]
\[
= \frac{1}{M} \sum_{i=1}^M p(x \notin Z_i | m_i \text{ sent})
\]
\[
= 1 - \frac{1}{M} \sum_{i=1}^M p(x \in Z_i | m_i \text{ sent})
\]
\[
= 1 - \frac{1}{M} \sum_{i=1}^M \int_{Z_i} p(x | m_i) dx
\]
The integrals in (5.26) are over the N-dimensional subset $Z_i \subset \mathcal{R}^N$. We illustrate this error probability calculation in Figure 5.4, where the constellation points s_1, \ldots, s_8 are equally spaced around a circle with minimum separation d_{min}. The probability of correct reception assuming the first symbol is sent, $p(x \in Z_i | m_1 \text{ sent})$, corresponds to the probability $p(x = s_1 + n | s_1)$ that when noise is added to the transmitted constellation s_1, the resulting vector $x = s_1 + n$ remains in the Z_1 region shown by the shaded area.

Figure 5.4 also indicates that the error probability in invariant to an angle rotation or axis shift of the signal constellation. The right side of the figure indicates a phase rotation of θ and axis shift of P relative to the constellation on the left side. Thus, $s_i' = s_i e^{i\theta} + P$. The rotational invariance follows because the noise vector $n = (n_1, \ldots, n_N)$ has components that are i.i.d Gaussian random variables with zero mean, thus the polar representation $n = r e^{i\theta}$ has θ uniformly distributed, so the noise statistics are invariant to a phase rotation. The shift invariance follows from the fact that if the constellation is shifted by some value $P \in \mathcal{R}^N$, the decision regions defined by (5.25) are also shifted by P. Let (s_i, Z_i) denote a constellation point and corresponding decision region before the shift and (s'_i, Z'_i) denote the corresponding constellation point and decision region after the shift. It is then straightforward to show that $p(x = s_i + n \in Z_i | s_i) = p(x' = s'_i + n \in Z'_i | s'_i)$. Thus, the error probability after an axis shift of the constellation points will remain unchanged.

While (5.26) gives an exact solution to the probability of error, we cannot solve for this error probability in closed form. Therefore, we now investigate the union bound on error probability, which yields a closed form expression that is a function of the distance between signal constellation points. Let A_{ik} denote the event that $||x - s_k|| < ||x - s_i||$ given that the constellation point s_i was sent. If the event A_{ik} occurs, then the constellation will be decoded in error since the transmitted constellation s_i is not the closest constellation point to the received vector x. However, event A_{ik} does not necessar-
Figure 5.4: Error Probability Integral and Its Rotational/Shift Invariance

... imply that s_k will be decoded instead of s_i, since there may be another constellation point s_j with $||x - s_j|| < ||x - s_k|| < ||x - s_i||$. The constellation is decoded correctly if $||x - s_i|| < ||x - s_k|| \forall k \neq i$. Thus

$$P_e(m; sent) = p \left(\bigcup_{k=1}^{M} A_{ik} \right) \leq \sum_{k=1}^{M} p(A_{ik}),$$

(5.27)

where the inequality follows from the union bound on probability.

Let us now consider $p(A_{ik})$ more closely. We have

$$p(A_{ik}) = p(||s_k - x|| < ||s_i - x|| | s_i; sent)$$
$$= p(||s_k - (s_i + n)|| < ||s_i - (s_i + n)||)$$
$$= p(||n + s_i - s_k|| < ||n||),$$

(5.28)

i.e. the probability of error equals the probability that the noise n is closer to the vector $s_i - s_k$ than to the origin. Recall that the noise has a mean of zero, so it is generally close to the origin. This probability does not depend on the entire noise component n: it only depends on the projection of n onto the line connecting the origin and the point $s_i - s_k$, as shown in Figure 5.5. Given the properties of n, the projection of n onto this one-dimensional line is a one dimensional Gaussian random variable n with mean and variance $N_0/2$. The event A_{ik} occurs if n is closer to $s_i - s_k$ than to zero, i.e. if $n > d_{ik}/2$, where $d_{ik} = ||s_i - s_k||$ equals the distances between constellation points s_i and s_k. Thus,

$$p(A_{ik} = p(n > d_{ik}/2) = \int_{d_{ik}/2}^{\infty} \frac{1}{\sqrt{2\pi N_0}} \exp \left[-\frac{v^2}{2N_0} \right] dv = Q \left(\frac{d_{ik}}{\sqrt{2N_0}} \right).$$

(5.29)

85
Figure 5.5: Noise Proejction

Substituting into (5.27) we get

$$P_e(m_i \text{ sent}) \leq \sum_{k=1}^{M} Q \left(\frac{d_{ik}}{\sqrt{2N_0}} \right).$$

(5.30)

Summing over all possible messages yields

$$P_e = \sum_{i=1}^{M} p(m_i) P_e(m_i \text{ sent}) \leq \frac{1}{M} \sum_{i=1}^{M} \sum_{k=1}^{M} Q \left(\frac{d_{ik}}{\sqrt{2N_0}} \right).$$

(5.31)

Defining the minimum distance of the constellation as $d_{\text{min}} = \min_{i,k} d_{ik}$, we can simplify (5.31) with the looser bound

$$P_e \leq (M - 1) Q \left(\frac{d_{\text{min}}}{\sqrt{2N_0}} \right).$$

(5.32)

Using a well-known bound for the Q function yields a closed-form bound

$$P_e \leq \frac{M - 1}{\sqrt{\pi}} \exp \left[-\frac{d_{\text{min}}^2}{4N_0} \right].$$

(5.33)

Note that for binary modulation where $M = 2$, there is only one way to make an error and d_{min} is the distance between the two signal constellation points, so the bound (5.32) is exact:

$$P_b = Q \left(\frac{d_{\text{min}}}{\sqrt{2N_0}} \right).$$

(5.34)

The minimum distance squared in (5.33) and (5.34) is typically proportional to the SNR of the received signal. Thus, error probability is reduced by increasing the received signal power.

Note that P_e is the probability of a symbol (message) error: $P_e = p(\hat{m} \neq m_i | m_i \text{ sent})$, where m_i corresponds to a message with $\log_2 M$ bits. However, system designers are typically more interested in the bit error probability than in the symbol error probability, since bit errors drive the performance of higher layer networking protocols and end-to-end performance. By designing the mapping of the $\log_2 M$ possible bit streams to messages $m_i, i = 1, \ldots, M$ so that one symbol error corresponds to only one bit error with high probability, we can make the approximation

$$P_b \approx \frac{P_e}{\log_2 M}.$$

(5.35)
The most common form of mapping with this property is called Gray coding, which is discussed in more detail in Section 5.3.

Signal space concepts are applicable to any modulation where bits are encoded as one of several possible analog signals. This is true for linear modulation techniques but generally not for nonlinear techniques.

5.2 Passband Modulation Principles

The basic principle of passband digital modulation is to encode an information bit stream into a carrier signal which is then transmitted over a communications channel. Demodulation is the process of extracting this information bit stream from the received signal. Corruption of the transmitted signal by the channel can lead to bit errors in the demodulation process. The goal of modulation is to send bits at a high data rate while minimizing the probability of data corruption.

In general, modulated carrier signals encode information in the amplitude $A(t)$, frequency $f(t)$, or phase $\theta(t)$ of a carrier signal. Thus, the modulated signal can be represented as

$$s(t) = A(t) \cos[2\pi(f_c + f(t))t + \theta(t)] = A(t) \cos(2\pi f_c t + \phi(t)), \quad (5.36)$$

where $\phi(t) = 2\pi f(t)t + \theta(t)$ which combines frequency and phase modulation into angle modulation.

We can rewrite the right-hand side of (5.36) in terms of its in-phase and quadrature components as:

$$s(t) = A(t) \cos \phi(t) \cos(2\pi f_c t) - A(t) \sin \phi(t) \sin(2\pi f_c t) = s_I(t) \cos(2\pi f_c t) - s_Q(t) \sin(2\pi f_c t), \quad (5.37)$$

where $s_I(t) = A(t) \cos \phi(t)$ is called the in-phase component of $s(t)$ and $s_Q(t) = A(t) \sin \phi(t)$ is called its quadrature component. The in-phase and quadrature signal components are baseband signals with bandwidth B: the corresponding transmitted $s(t)$ is a passband signal with center frequency f_c and passband bandwidth $2B$. We can also write $s(t)$ as

$$s(t) = \Re\{u(t)e^{j2\pi f_c t}\}, \quad (5.38)$$

where $u(t) = s_I(t) - js_Q(t)$. These different representations will be useful in our discussion of linear modulation techniques, where the in-phase and quadrature signal components are often processed separately.

5.3 Linear Modulation

In linear modulation the information bit stream is encoded in the amplitude and/or phase of the transmitted signal, not the frequency. There are three main types of linear modulation:

- **Pulse Amplitude Modulation (M-PAM):** information encoded in amplitude only.
- **Phase Shift Keying (M-PSK):** information encoded in phase only.
- **Quadrature Amplitude Modulation (M-QAM):** information encoded in both amplitude and phase.

Let $s(t) = \Re\{u(t)e^{j2\pi f_c t}\}$ denote the transmitted signal. Then for all linear modulation schemes,

$$u(t) = \sum_n s_n g(t - nT_s), \quad s_n = a_n + jb_n, \quad (5.39)$$
where \(T_s \gg 1/f_c \) is the symbol period, \(n \) is the time index, \(g(t) \) is the pulse shape, and \(s_n \) is a complex number representing \(K = \log_2 M \) bits of the information sequence which is constant over the symbol period \(T_s \). The different possible values of \(s_n \), scaled by an constant proportional to the energy in the pulse shape, make up the two-dimensional signal constellation corresponding to the in-phase and quadrature signal components. The bit rate is \(K \) bits per symbol or \(R = K/T_s \) bits per second. Since \(s_n = a_n + jb_n \) ranges over a set of complex values, the envelope of the signal is generally nonconstant. The mapping of the information sequence into the complex number \(s_n \) along with the choice of pulse shape \(g(t) \) determines the digital modulation technique. We will discuss pulse shaping in Section 5.4 below. From this expression, the transmitted signal is then given by

\[
s(t) = \left[\sum_n a_n g(t - nT_s) \right] \cos 2\pi f_c t - \left[\sum_n b_n g(t - nT_s) \right] \sin 2\pi f_c t, \tag{5.40}
\]

where the first bracketed component is the in-phase component \(s_I(t) \) and the second bracketed term is the quadrature component \(s_Q(t) \). Note that the spectral properties of \(s(t) \) and \(u(t) \) are completely determined by the spectral characteristics of \(g(t) \). In particular, the bandwidth of the baseband signal \(u(t) \) is equal to the bandwidth of the pulse shape \(g(t) \), and the bandwidth of the transmitted signal \(s(t) \) is twice this baseband bandwidth. Thus, minimizing the mainlobe width of \(g(t) \) leads to better spectral efficiency, and minimizing the sidelobe amplitude leads to reduced adjacent channel interference. These design criteria are used to select the pulse shape \(g(t) \), as we discuss in Section 5.4 below.

All linear modulation can be generated using the following modulator structure.

![Figure 5.6: Linear Modulator.](image-url)
5.3.1 Pulse Amplitude Modulation (M-PAM)

We will start by looking at the simplest form of linear modulation, one-dimensional MPAM, which has no quadrature component \((b_n = 0)\). For M-PAM all of the information is encoded into the signal amplitude \(A_m\). The transmitted signal over one symbol time is given by

\[
s_m(t) = \Re \{ A_m g(t) e^{j2\pi f_c t} \} = A_m g(t) \cos 2\pi f_c t, \quad 0 \leq t \leq T_s >> 1/f_c, \tag{5.41}
\]

where \(A_m = (2m - 1 - M)d, m = 1, 2, \ldots, M = 2^K\) defines the signal constellation. Thus, the amplitude of the transmitted signal takes on \(M = 2^K\) different values, which implies that each pulse conveys \(\log_2 M = K\) bits per symbol time \(T_s\). The pulse shape \(g(t)\) is designed to improve spectral efficiency and combat ISI, as discussed in Section 5.4 below.

Over one symbol period \([0, T_s]\) the M-PAM signal has energy

\[
E_{s_m} = \int_0^{T_s} s_m^2(t)dt = \int_0^{T_s} A_m^2 g^2(t) [1 + \cos 4\pi f_c t] dt \approx \frac{1}{2} A_m^2 \int_0^{T_s} g^2(t) dt = \frac{1}{2} A_m^2 E_g, \tag{5.42}
\]

where \(E_g\) is the signal energy in the pulse shape and the approximation holds for \(f_c T_s >> 1\), since then \(g(t)\) is approximately constant over one cycle \(T_c = 1/f_c\). The distance between pairs of modulated signals representing different data sequences is thus

\[
d_{mn} = ||s_m(t) - s_n(t)|| = \sqrt{\int_0^{T_s} |s_m(t) - s_n(t)|^2 dt} \approx \sqrt{\frac{5}{2} E_g |A_m - A_n|} \geq d \sqrt{2 E_g} = d_{min}, \tag{5.43}
\]

where \(d_{min}\) is the minimum distance between the signal constellation points.

The constellation mapping is usually done by Gray encoding, where the signal amplitudes which are adjacent to each other differ by one binary digit, as illustrated in Figure 5.7. With this encoding method, if noise causes the demodulation process to mistake one symbol for an adjacent one (the most likely type of error), this results in only a single bit error in the sequence of \(K\) bits.

\[
M=4, K=2
\]

00 01 11 10

\[
M=8, K=3
\]

000 001 011 010 110 111 101 100

Figure 5.7: Gray Encoding for M-PAM.

5.3.2 Phase Shift Keying (M-PSK)

For M-PSK all of the information is encoded in the phase of the transmitted signal. Thus, the transmitted signal over one symbol time is given by

\[
s_m(t) = \Re \{ g(t) e^{j2\pi (m-1)/M} e^{j2\pi f_c t} \}, \quad 0 \leq t \leq T_s \tag{5.44}
\]
\[
g(t) = g(t) \cos \left[2\pi f_c t + \frac{2\pi}{M}(m - 1) \right] \quad (5.45)
\]

\[
g(t) = g(t) \cos \left[\frac{2\pi}{M}(m - 1) \right] \cos 2\pi f_c t - g(t) \sin \left[\frac{2\pi}{M}(m - 1) \right] \sin 2\pi f_c t. \quad (5.46)
\]

Thus, for \(s_n = a_n + j b_n \), the constants \(a_n \) and \(b_n \) are given by \(\cos \left[\frac{2\pi}{M}(m - 1) \right] \) and \(\sin \left[\frac{2\pi}{M}(m - 1) \right] \), respectively. As in the case of M-PAM, \(g(t) \) is the pulse shape, and \(\theta_m = \frac{2\pi}{M}(m - 1), m = 1, 2, \ldots, M = 2^K \) are the possible carrier phases which convey the information bits. 2-PSK is often referred to as binary PSK or BPSK, while 4-PSK is often called quadrature phase shift keying (QPSK), and is the same as 4-QAM with square constellations, as defined below.

All possible signals \(s_m(t) \) have equal energy:

\[
E_{s_m} = \int_0^{T_r} s_m^2(t) dt = \frac{1}{2} \int_0^{T_r} g^2(t) dt = \frac{1}{2} E_g. \quad (5.47)
\]

Note that for \(g(t) = 1 \), i.e. a rectangular pulse, this signal has constant envelope, unlike the other amplitude modulation techniques M-PAM and M-QAM. However, rectangular pulses are spectrally-inefficient, and more efficient pulse shapes generally make M-PSK nonconstant envelope. The distance between signal points in the M-PSK signal constellation is

\[
d_{mn} = \sqrt{E_g \left(1 - \cos \frac{2\pi}{M} (m - n) \right)} \geq \sqrt{E_g (1 - \cos 2\pi / M)} = d_{min} \quad (5.48)
\]

As for M-PAM, constellation mapping is usually done by Gray encoding, where the signal phases which are adjacent to each other differ by one binary digit, as illustrated in Figure 5.8. With this encoding method, mistaking a symbol for an adjacent one causes only a single bit error.

Figure 5.8: Gray Encoding for M-PSK.

5.3.3 Quadrature Amplitude Modulation (M-QAM)

For M-QAM, the information bits are encoded in both the amplitude and phase of the transmitted signal. Thus, whereas both M-PAM and M-PSK have one degree of freedom in which to encode the information bits (amplitude or phase), M-QAM has two degrees of freedom. As a result, M-QAM is the most spectrally-efficient of the three linear modulation techniques we discuss, since for a given signal bandwidth it can encode the most number of bits per symbol for a given average power.
The transmitted signal is given by

\[s_m(t) = \Re\{A_m e^{j\theta_m} g(t) e^{j2\pi f_c t}\} = A_m g(t) \cos[2\pi f_c t + \theta_m], \quad 0 \leq t \leq T_s. \] (5.49)

The energy in \(s_m(t) \) is

\[E_{s_m} = \int_0^{T_s} s_m^2(t) \approx \frac{1}{2} A_m^2 E_g, \] (5.50)

the same as for M-PAM. The distance between any pair of signal points in the signal constellation is

\[d_{mn} = \sqrt{\frac{1}{2} E_g [(a_m - a_n)^2 + (b_m - b_n)^2]}, \] (5.51)

where \(a_k = A_k \cos \theta_k \) and \(b_k = A_k \sin \theta_k \) for \(k = m, n \).

For square signal constellations, where \(a_n \) and \(b_n \) take values on \((2m - 1 - L)d, m = 1, 2, \ldots, L = 2^l\), the minimum distance between signal points reduces to \(d_{\text{min}} = d\sqrt{2E_g} \), the same as for M-PAM. The most common square constellations are 4-QAM and 16-QAM, which are shown in Figure 5.9 below. These square constellations have a total number of \(M = 2^{2l} \) constellation points, which are used to send \(2l \) bits/symbol, or \(l \) bits per dimension. It can be shown [28, 8] that the average power of \(d_n \) for \(l \) bits per dimension, \(S_I \), is proportional to \(4^l/3 \), and it follows that the average power for one more bit per dimension \(S_{I+1} \approx 4S_l \). Thus, for square constellations it takes approximately 6 dB more power to send an additional 1 bit/dimension or 2 bits/symbol.

![4-QAM and 16-QAM Constellations.](image)

Good constellation mappings can be hard to find for QAM signals, especially for irregular constellation shapes. In particular, it is hard to find a Gray code mapping where all adjacent symbols differ by a single bit.

5.3.4 Constellation Shaping

Rectangular and hexagonal constellations have a better power efficiency than square or circular constellations, and can save up to 1.3 dB of power at the expense of increased complexity in the constellation map [28]. The optimal constellation shape is a sphere in \(N \)-dimensional space, which must be mapped
to a sequence of constellations in 2-dimensional space. The general conclusion in [28] is that for uncoded modulation, the increased complexity of spherical constellations is not worth their energy gains, since coding can provide much better performance at less complexity cost. However, if a complex channel code is already being used and little further improvement can be obtained by a more complex code, constellation shaping may obtain around 1 dB of additional gain [29]. An in-depth discussion of constellation shaping, as well as constellations which allow a nonintegral number of bits per symbol, can be found in [28, 29].

5.3.5 Differential Encoding

The information in M-PSK and M-QAM signals is carried in the signal phase. Thus, these modulation techniques require coherent demodulation, i.e. the phase of the signal carrier must be known at the receiver. This phase can be recovered through the use of pilot tones and a phase lock loop [1]. However, these implementations require more complexity and cost in the receiver, and they are also susceptible to phase drift of the carrier. Moreover, obtaining a coherent phase reference in a rapidly fading channel can be difficult. Thus, differential techniques, which do not require a coherent phase reference, are generally preferred for wireless applications.

Differential modulation falls in the more general class of modulation with memory, where the symbol transmitted at time n depends on the current information bits and the symbol transmitted at time $n-1$. The differential encoding method can be used for shaping the spectrum of the transmitted signal so that it matches the spectral characteristics of the channel [1, Chapter 4-3-2], as in NRZ and NRZI spectral shaping.

We are mainly concerned with differential encoding to avoid the need for a coherent phase reference. The basic principle in this case is to use the previous symbol as a phase reference for the current symbol. Thus, the information bits are encoded as the differential phase between the current symbol and the previous symbol. For example, consider 4-PSK modulation with differential encoding, which is referred to as either D-4PSK or DQPSK. Suppose the symbol at time $n-1$ has phase $\theta(n-1) = e^{j\theta_m}$. Then at time n, if the information bits are 00, the corresponding symbol at time n would have phase $\theta(n) = e^{j\theta_m}$, i.e. to encode the bits 00, the symbol from time $n-1$ is repeated at time n. If the two information bits to be sent at time n are 01, then the corresponding symbol at time n has phase $\theta(n) = e^{j(\theta_m + \pi/4)}$. Similarly, for information bits 10 the symbol phase is $\theta(n) = e^{j(\theta_m + 3\pi/2)}$, and for information bits 11 the symbol phase is $\theta(n) = e^{j(\theta_m + \pi)}$. In all cases, the symbol phase at time n depends on the current information bits at time n and the symbol phase θ_m over the previous symbol interval. Differential encoding is most common for M-PSK signals, since the differential mapping is relatively simple. However, differential encoding can also be done for M-QAM with a more complex differential mapping. Differential encoding of MPSK is denoted by D-MPSK, and for BPSK and QPSK this becomes DPSK and DQPSK, respectively.

Differential encoding is less sensitive to a random drift in the carrier phase. However, if the channel has a nonzero doppler, the signal phase can decorrelate between symbol times, making the previous symbol a very noisy phase reference. This decorrelation gives rise to an irreducible error floor for differential modulation over wireless channels with doppler [9], as we shall discuss in Chapter 5.

5.3.6 Quadrature Offset

Any linearly modulated signal modulated by the baseband symbol $s_n = a_n + jb_n$ will take on a phase in one of the four quadrants in the complex plane. At time nT_s the transition to a new symbol value can cause a phase transition of up to 180 degrees, which may cause the signal amplitude to transition through the zero point: these abrupt phase transitions and large amplitude variation can be distorted by
nonlinear amplifiers and filters. These abrupt transitions are avoided by offsetting the quadrature branch pulse \(g(t) \) by half a symbol period, as shown in Figure 5.10. This offset makes the signal less sensitive to distortion at this transition point.

Linear modulation with phase offset is usually abbreviated as O-MPSK, where the O indicates the offset. For example, QPSK modulation with quadrature offset is referred to as OQPSK. OQPSK has the same spectral properties as QPSK for linear amplification, but has higher spectral efficiency under nonlinear amplification, since the maximum phase transition of the signal is 90 degrees. Another technique to mitigate the amplitude fluctuations of a 180 degree phase shift used in the IS-54 standard for digital cellular is \(\pi/4 \)-QPSK [10], which allows a maximum phase transition of 135 degrees, versus 90 for offset QPSK and 180 for QPSK. Thus, \(\pi/4 \)-QPSK does not have as good spectral properties as OQPSK under nonlinear amplification. However, \(\pi/4 \)-QPSK can be differentially encoded, eliminating the need for a coherent phase reference, which is a significant advantage. Using differential encoding with \(\pi/4 \)-QPSK is called \(\pi/4 \)-DQPSK. The \(\pi/4 \) DQPSK modulation works as follows: the information bits are first differentially encoded as in DQPSK, which yields one of the four QPSK constellation points. Then, every other symbol transmission is shifted in phase by \(\pi/4 \). This periodic phase shift has a similar effect as the time offset in OQPSK; it reduces the amplitude fluctuations at symbol transitions, which makes the signal more robust against noise and fading.

5.4 Pulse Shaping

For unfiltered M-PSK, if \(g(t) \) is a rectangular pulse of width \(T \), then the envelope of the signal is constant. However, a rectangular pulse has very high spectral sidelobes, which means that signals must use a larger bandwidth to eliminate some of the adjacent channel sidelobe energy. Pulse shaping is a method to reduce sidelobe energy relative to a rectangular pulse, however the shaping must be done in such a way that intersymbol interference (ISI) is not introduced. Thus, the pulse shapes \(g(t) \) must satisfy the Nyquist
criterion \cite{1}, which requires the ISI at the ideal sampling point of the system to be zero. The following pulse shapes all satisfy the Nyquist criterion.

1. Rectangular pulses: \(g(t) = 1, 0 \leq t \leq T_s \). This pulse shape leads to constant envelope signals in M-PSK, but has lousy spectral properties due to its high sidelobes.

2. Cosine pulses: \(g(t) = \sin \pi t / T_s, 0 \leq t \leq T_s \). Cosine pulses are mostly used in MSK modulation, where the quadrature branch of the PSK modulation has its pulse shifted by \(T_s/2 \). This leads to a constant amplitude modulation with sidelobe energy that is 10 dB lower than that of rectangular pulses. Gaussian MSK (GMSK) uses the same quadrature time shift with a Gaussian-shaped pulse instead of the Cosine pulse. GMSK has both lower sidelobe energy and a narrower main lobe than MSK. Because of these favorable spectral properties, GMSK was chosen as the modulation technique for the European digital cellular standard.

3. Raised Cosine Pulses: These pulses are designed in the frequency domain according to the desired spectral properties. Thus, the pulse \(g(t) \) is first specified relative to its Fourier Transform:

\[
G(f) = \begin{cases}
\frac{T_s}{2} \left[1 - \sin \frac{\pi t}{T_s} \right], & 0 \leq |f| \leq \frac{(1-\beta)/2}{T_s} \\
\left(1 - \frac{1}{2T_s} \right), & \frac{(1-\beta)/2}{T_s} \leq |f| \leq \frac{(1+\beta)/2}{T_s}
\end{cases}
\]

where \(\beta \) is defined as the rolloff factor, which determines the rate of spectral rolloff, as shown in Figure 5.11. Setting \(\beta = 0 \) yields a rectangular pulse. The pulse \(g(t) \) in the time domain corresponding to \(G(f) \) is

\[
g(t) = \frac{\sin \pi t / T_s}{\pi t / T_s} \cdot \frac{\cos \beta \pi t / T_s}{1 - 4\beta^2 t^2 / T_s^2}.
\]

Both time and frequency domain properties of the Raised Cosine pulse are shown in Figure 5.11.

The tails of this pulse in the time domain decay as \(1/t^3 \) (faster than for the previous pulse shapes), so a mistiming error in sampling leads to a series of intersymbol interference components that converge. A variation of the Raised Cosine pulse is the Root Cosine pulse, derived by taking the square root of the frequency response for the Raised Cosine pulse. The Root Cosine pulse has better spectral properties than the Raised Cosine pulse, but it decays less rapidly in the time domain, which makes it more susceptible to mistiming errors.

5.5 Constant Envelope (Nonlinear) Modulation

As indicated by the name, the class of constant envelope signal modulation has a transmitted signal \(s(t) \) with a constant envelope. Because the signal is constant envelope, nonlinear amplifiers can be used with high power efficiency, and the modulated signal is less sensitive to amplitude distortion introduced by the channel or the hardware. The price exacted for this robustness is a lower spectral efficiency: because the modulation technique is nonlinear, it tends to have a higher bandwidth occupancy than the linear modulation techniques described in Section 5.3.

To maintain a constant signal envelope, the information bits are typically encoded into the frequency of the transmitted signal, and in this case the modulation is called frequency shift keying, or M-FSK. We now describe the basic principles of M-FSK and its variations MSK and GMSK.
In M-FSK the modulated signal is given
\[s_m(t) = A \cos[2\pi f_c t + 2\pi \alpha_m \Delta f_c t], \quad 0 \leq t < T_s, \]
where \(\alpha_m = (2m - 1 - M), m = 1, 2, \ldots, M = 2^K. \) The minimum frequency separation between different symbols is thus \(2\Delta f_c. \)

A simple way to generate the M-FSK signal is to have M oscillators operating at the different frequencies \(f_c + \alpha_m \Delta f_c, \) where the modulator switches between these different oscillators each symbol time \(T_s. \) However, with this implementation there will be a discontinuous phase transition at the switching times due to phase offsets between the oscillators. This discontinuous phase leads to a spectral broadening, which is undesirable.

A better way to generate M-FSK that eliminates the phase discontinuity is to frequency modulate a single carrier with a modulating waveform, as in analog FM. In this case the modulated signal will be given by
\[s_m(t) = A \cos \left[2\pi f_c t + 2\pi \beta \int_{-\infty}^{t} u(\tau) d\tau \right] = A \cos[2\pi f_c t + \theta(t)], \]
where \(u(t) = \sum_n a_n g(t - nT_s) \) is an M-PAM signal modulated with the information bit stream, as described in Section 5.3.1. Clearly the phase \(\theta(t) \) is continuous with this implementation. This form of M-FSK is therefore called continuous phase FSK, or CPFSK.

By Carson’s rule [1], for \(\beta \) small the transmission bandwidth of \(s(t) \) is approximately
\[B_s \approx M\Delta f_c + 2B, \]
where \(B = B_g \) is the bandwidth of the M-PAM modulating signal \(u(t). \) By comparison, the bandwidth of a linearly modulated waveform is roughly \(B_s \approx 2B_g. \) Thus, the spectral occupancy of CPFSK relative to linear modulation increases by more than double, and the spectral efficiency decreases as the number of bits per symbol \(K = \log_2 M \) increases.
MSK is a special case of FSK where the frequency separation is $\Delta f_c = .5/T_s$. Note that this is the minimum frequency separation so that $< s_m(t), s_n(t) > = 0$ over a symbol time, for $m \neq n$. Since signal orthogonality is required for demodulation, $\Delta f_c = .5/T_s$ is the minimum possible frequency separation in FSK, and therefore it occupies the minimum bandwidth.

Since FSK and MSK are nonlinear techniques, they tend to have a higher bandwidth requirement than linear modulation techniques with the same spectral efficiency. The bandwidth requirement can be reduced somewhat by pulse-shaping the PAM signal in (5.53). The most common pulse shape to improve the spectral efficiency of MSK is the Gaussian pulse shape, defined as

$$g(t) = \frac{\sqrt{\pi}}{\alpha} e^{-\pi^2 t^2/\alpha^2},$$

where α is a parameter that dictates spectral efficiency. This Gaussian-shaped MSK modulation is abbreviated as GMSK. The spectrum of $g(t)$, which dictates the spectrum of the GMSK, is given by

$$G(f) = e^{-\alpha^2 f^2}.$$ \hspace{1cm} (5.56)

The parameter α is related to the 3dB bandwidth of $g(t), B_g$, by

$$\alpha = \sqrt{-\ln\sqrt{.5}} B_g.$$ \hspace{1cm} (5.57)

Clearly making α large results in a higher spectral efficiency.

In general GMSK signals have a high power efficiency since they are constant amplitude, and a high spectral efficiency since the Gaussian pulse shape has good spectral properties for large α. For this reason GMSK is used in the GSM standard for digital cellular systems. Although this is a good choice for voice modulation, it is not necessarily a good choice for data. The Gaussian pulse shape does not satisfy the Nyquist criterion, and therefore the pulse shape introduces ISI, which increases as α increases. Thus, improving spectral efficiency by increasing α leads to a higher ISI level, thereby creating an irreducible error floor from this self-interference. Since the required BER for voice is relatively high $P_b \approx 10^{-3}$, the ISI can be fairly high and still maintain this target BER. In fact, it is generally used as a rule of thumb that $B_g T_s = .5$ is a tolerable amount of ISI for voice transmission with GMSK. However, a much lower BER is required for data, which will put more stringent constraints on the maximum α and corresponding minimum B_g, thereby decreasing the spectral efficiency of GMSK for data transmission.
Bibliography

Chapter 6

Performance of Digital Modulation over Wireless Channels

We now consider the performance of the digital modulation techniques discussed in the previous chapter when used over AWGN channels and channels with flat-fading. There are two performance criteria of interest: the probability of error, defined relative to either symbol or bit errors, and the outage probability, defined as the probability that the instantaneous signal-to-noise ratio falls below a given threshold. Flat-fading can cause a dramatic increase in either the average bit-error-rate or the signal outage probability, as we describe in more detail below. Wireless channels may also exhibit frequency selective fading and Doppler shift. Frequency-selective fading gives rise to intersymbol interference (ISI), which causes an irreducible error floor in the received signal. Doppler causes spectral broadening, which leads to adjacent channel interference (typically small at reasonable user velocities), and also to an irreducible error floor in signals with differential phase encoding (e.g. DPSK), since the phase reference of the previous symbol partially decorrelates over a symbol time. These effects are discussed in more detail below.

6.1 AWGN Channels

In this section we define the AWGN channel model and then examine the error probability on these channels for different linear modulation techniques. Our analysis uses the signal space concepts of Chapter 5.1 and shows the ML demodulator has a relatively simple form for these basic modulation techniques.

6.1.1 Channel Model and SNR

The AWGN channel model consists of a modulated signal \(s(t) = R\{u(t)e^{j2\pi f_d t}\} \) that is transmitted through the channel. The channels adds noise \(n(t) \) that is a Gaussian random process with mean zero and power spectral density \(N_0/2 \). The received signal is thus \(r(t) = s(t) + n(t) \). We define the signal-to-noise power ratio (SNR) at the receiver as the ratio of received signal power \(P_r \) to the power of the noise within the bandwidth of the transmitted signal \(s(t) \). The received power \(P_r \) is determined by the transmitted power and the path loss, shadowing, and multipath fading, as described in Chapters 2-3. The noise power is determined by the bandwidth of the transmitted signal and the spectral properties of \(n(t) \). Specifically, if the bandwidth of the modulating signal \(u(t) \), is \(B \) (i.e. \(u(t) \) has nonzero frequency components within the bandwidth \([-B, B]\)) then the bandwidth of the transmitted signal \(s(t) \) is \(2B \). Since the noise \(n(t) \) has uniform power spectral density \(N_0/2 \), the total noise power within the bandwidth \(2B \)
is just \(N = N_0 / 2 \times 2B = N_0 B \). So we have

\[
\text{SNR} = \frac{P_r}{N_0 B}.
\]

The SNR is often expressed in terms of the signal energy per bit \(E_b \) or per symbol \(E_s \) as

\[
\text{SNR} = \frac{P_r}{N_0 B} = \frac{E_s}{N_0 BT_s} = \frac{E_b}{N_0 BT_b},
\]

where \(T_s \) is the symbol time and \(T_b \) is the bit time (for binary modulation \(T_s = T_b \) and \(E_s = E_b \)). For Nyquist data pulses, the allocated signal bandwidth is approximately equal to the inverse symbol period \((T_s = B^{-1})\), with some signal energy outside the bandwidth \(B = 1/T_s \). Under this assumption, \(\text{SNR} = E_s / N_0 \) for multilevel signaling and \(\text{SNR} = E_b / N_0 \) for binary signaling. The quantities \(\gamma_s = E_s / N_0 \) and \(\gamma_b = E_b / N_0 \) are sometimes called the SNR per symbol and the SNR per bit, respectively. For performance specification, we are interested in the bit error probability \(P_b \) as a function of \(\gamma_b \). However, for M-array signaling (e.g. MPAM, MPSK, etc.), the bit error probability depends on both the symbol error probability and the mapping of bits to symbols. Thus, we typically compute the symbol error probability \(P_b \) as a function of \(\gamma_s \) based on the signal space concepts of Chapter 5.1 and then obtain \(P_b \) as a function of \(\gamma_b \) using an exact or approximate conversion, as will be explained in more detail below.

6.1.2 Optimal Linear Demodulation: The Matched Filter

Consider an M-array modulation technique where, over a given symbol time, the transmitted signal is one of \(s_1(t), s_2(t), \ldots, s_M(t) ; 0 \leq t < T_s \) corresponding to a message \(m_i \) of \(\log_2 M \) bits. The job of the demodulator in AWGN is to take the received signal plus noise \(s_i(t) + n(t) \) and determine which of the \(M \) messages (bit streams) was actually sent. The optimal linear demodulator in AWGN minimizes the probability of symbol error \(P_s \) of decoding the wrong message. We saw in Chapter 5.1 that \(P_s \) is minimized by using a bank of matched filters followed by a maximum likelihood detector. The filters are matched to the \(M \) possible transmitted signals over the symbol time \(T_s \), as shown in Figure 6.1. For a set of transmitted signals \(s_1(t), s_2(t), \ldots, s_M(t) ; 0 \leq t < T_s \), the matched filter to the \(i \)th signal is defined as \(s_i(T_s - t) ; 0 \leq t < T_s \). An interesting property of matched filters is that for a signal corrupted by AWGN, passing that signal through a matched filter maximizes the SNR of the filter output [3].

The \(M \) outputs \(x_i(t) \) of the matched filters are sampled at each symbol time \(nT_s \), and these samples \(\mathbf{x} = \{x_1, \ldots, x_M\} \) are fed into a maximum likelihood detector. For the input signal \(s_i(t) \) the \(k \)th sample is given by \(x_k = s_{ik} + n_k \), where \(s_{ik} = < s_i(t), s_k(t) > \) and \(n_k = < n(t), s_k(t) > \) for the signal inner product defined in (5.8).

We know from Chapter 5.1 that the vector \(\mathbf{x} \) of \(x_k \) samples is a sufficient statistic for demodulation, i.e. all the information in the original received signal \(s_i(t) + n(t) \) which is relevant to making a correct demodulation decision is contained in the samples \(x_1, x_2, \ldots, x_M \). The maximum likelihood detector chooses the symbol \(s_i \) such that \(p(\mathbf{x} | s_i) \geq p(\mathbf{x} | s_j) ; j \neq i \). This assumes that all \(s_i \) symbols are equally likely. If not then a maximum a posteriori (MAP) probability criterion is used to determine \(s_i \), which takes into account the prior probabilities on \(s_i \), as in (5.2).

If the transmitted signals are orthogonal \(\langle s_i(t), s_j(t) \rangle = 0, i \neq j \) then the noise components \(n_k \) in each branch are uncorrelated and thus independent. The matched filter branch outputs \(\{x_k\} \) are therefore statistically independent Gaussian random variables, so that

\[
p(\mathbf{x} | s_i) = \prod_{k=1}^{M} p(x_k | s_{ik}) = \frac{1}{(\pi N_0)^{M/2}} \exp \left[-\sum_{k=1}^{M} \frac{(x_k - s_{ik})^2}{N_0} \right], \quad i = 1, \ldots, M.
\]
Figure 6.1: Matched Filter Demodulation.

The matched filter demodulation applies to any modulation technique. Note that the matched filter demodulation depicted in Figure 6.1 is done at passband. Equivalent performance is obtained by first converting the received signal to baseband and designing the matched filters to the equivalent baseband signal. We now determine the probability of symbol and/or bit error for specific modulation techniques for this matched filter receiver structure.

6.1.3 BPSK Analysis

We first consider BPSK modulation with coherent detection and perfect recovery of the carrier frequency and phase. With binary modulation each symbol corresponds to one bit, so the symbol and bit error rates are the same. The transmitted signal is

\[s(t) = Ag(t) \cos 2\pi f_c t \]

\[s(t) = Ag(t) \cos (2\pi f_c t + \pi) = -Ag(t) \cos 2\pi f_c t \]

\[s_1(t) = Ag(t) \]

\[s_0(t) = Ag(t) \]

The matched filters corresponding to each symbol \(s_0(t) \) and \(s_1(t) \) are the same except for a sign difference. Thus, the matched filter bank in Figure 6.1 for BPSK corresponds to downconverting the signal to baseband, passing it through a filter \(g(T_b - t) \) matched to the pulse shape \(g(t) \), and then passing the resulting sample through a threshold device with threshold value zero, as shown in Figure 6.2. Noise is introduced at the receiver as

\[n(t) = n_I(t) \cos 2\pi f_c t - n_Q(t) \sin 2\pi f_c t \]

where \(n_I(t) \) and \(n_Q(t) \) are the in-phase and quadrature components of the noise, respectively. Since the BPSK signal has no quadrature component, only the in-phase signal is demodulated. Thus, the demodulator removes the quadrature component of the noise under our perfect carrier recovery assumption.

Figure 6.2: Optimal Demodulation for BPSK.

Assume that \(x(t) \) is sampled every \(nT_b \) seconds, and let \(x(n) \) denote the output of the sampler at time \(nT_b \). Then

\[x(n) = A(n) + n_I(n) \]

for \(s_n = 0 \) and

\[x(n) = -A(n) + n_I(n) \]

for \(s_n = 1 \), where \(A(n) \)
and \(n_f(n) \) are the values of the matched filter output corresponding to signal \(s(t) \) and in-phase noise, respectively, sampled at time \(nT_b \). The matched filter is normalized so that \(\int_{-\infty}^{\infty} g^2(\tau) \, d\tau = 1 \). With this normalization we have
\[
A(n) = \int_{-\infty}^{\infty} (-1)^n A g^2(\tau) \, d\tau = (-1)^n A,
\]
so \(A(n) = A \) for \(s_n = 0 \) and \(A(n) = -A \) for \(s_n = 1 \). Let us now consider the noise term \(n_f(n) \).

Since \(n(t) \) is a white Gaussian random process with mean zero, \(n_f(n) \) is a Gaussian random variable with \(\mathbb{E}[n_f(n)] = 0 \). Its variance is
\[
\sigma_{n_f}^2 = \mathbb{E}[n_f^2(n)] = \mathbb{E} \left[\int_{-\infty}^{\infty} n_f(nT_b - t) g(T_b - t) \, dt \int_{-\infty}^{\infty} n_f(nT_b - \tau) g(T_b - \tau) \, d\tau \right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{E}[n_f(nT_b - t) n_f(nT_b - \tau)] g(T_b - t) g(T_b - \tau) \, dt \, d\tau = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{N_0}{2} \delta(t - \tau) g(T_b - t) g(T_b - \tau) \, dt \, d\tau = \frac{N_0}{2} \int_{-\infty}^{\infty} g^2(T_b - t) \, dt = \frac{N_0}{2},
\]

where the last equality follows from the normalization of the pulse shape \(g(t) \).

BPSK decoding consists of using \(x(n) = (-1)^n A + n_f(n) \) to determine an estimate of \(s_n \) for each \(n \). We call this estimate \(\hat{s}_n \). Note that the signal constellation points for BPSK correspond to \(A \) and \(-A\), so \(d_{min} = 2A \). The probability of bit error \(P_b \) is just the probability that \(\hat{s}_n \neq s_n \). The estimate \(\hat{s}_n \) which minimizes \(P_b \) is the estimate that assigns \(\hat{s}_n = 0 \) if \(s_n \geq 0 \) and \(\hat{s}_n = 1 \) if \(s_n < 0 \), as indicated by the threshold detector in Figure 6.2. The probability of error is then given by
\[
P_b = p[\hat{s}_n = 0|s_n = 1]p[s_n = 1] + p[\hat{s}_n = 1|s_n = 0]p[s_n = 0].
\]
From the threshold decision rule and assuming equally likely inputs, we get \(P_b = .5p[n_f(n) < -A] + .5p[n_f(n) > A] \).

Using the symmetry of the Gaussian distribution, the two components of \(P_b \) are equal. Thus
\[
P_b = p[n_f(n) < -A] = Q(A/\sigma_{n_f}) = Q(A/\sqrt{.5N_0}) = Q(d_{min}/\sqrt{2N_0}),
\]
which matches with the signal space analysis result (5.34) of the previous chapter, as it must. Now using the fact that \(A = \sqrt{E_b} \) we have the final expression
\[
P_b = Q(\sqrt{E_b/\sqrt{5N_0}}) = Q(\sqrt{2\gamma_b}).
\]

6.2 Error Probability for Linear Modulations in AWGN

For binary modulation the exact probability of bit error can be derived (5.34). However, the error probability calculation gets more complicated as the size of the signal constellation increases, since there are more ways to make a symbol error. Exact calculation of \(P_s \) for several different types of signal modulation can be found in [1, 2]. The simple union bound (5.32) derived in Chapter 5.1 is a reasonable approximation for \(P_s \). However, this bound is not tight at high SNRs since in this case the probability of mistaking a symbol for something other than its nearest neighbor is very low. We can therefore improve on (5.32) for high SNRS by assuming \(P_s \) is roughly equal to the number of nearest neighbors (\(\alpha \)) in the
signal constellation times the probability of mistaking a constellation points for a nearest neighbor at distance \(d_{\text{min}} \):

\[
P_s \approx \alpha Q \left(\sqrt[4]{\frac{d_{\text{min}}^2}{2N_0}} \right) .
\]

(6.6)

Note that as described in Chapter 4, the minimum distance \(d_{\text{min}} \) between constellation points is typically a function of the signal energy per symbol \(E_s \).

Applying this approximation to coherent MPSK and MQAM yields

\[
P_s \approx \alpha_M Q \left(\sqrt[4]{\beta_M \gamma_s} \right) ,
\]

(6.7)

where \(\alpha_M \) and \(\beta_M \) depend on the modulation type. Values of \(\alpha_M \) and \(\beta_M \) for several modulation types are given below. Although this formula is justified as an approximation at high SNRs based on the probability of mistaking a symbol for its nearest neighbors, a rigorous derivation for (6.7) is made in [8] and also referenced in [9]. Moreover, [8] indicates that (6.7) captures the performance degradation due to imperfect receiver conditions such as slow carrier drift with an appropriate adjustment of the constants.

Performance specifications are generally more concerned with the bit error probability \(P_b \) as a function of the bit energy \(\gamma_b \). To convert from \(P_s \) to \(P_b \), we must consider the bit-to-symbol mapping, and the calculation can get quite messy. However, for MPSK and MQAM with Gray encoding and relatively high SNR, we can use the approximation that one symbol error results in a single bit error. Then using the fact that one symbol corresponds to \(\log_2 M \) bits, we have

\[
P_b(\gamma_s) = \frac{\# \text{ of bit errors}}{\# \text{ of bits}} \approx \frac{\# \text{ of symbol errors}}{(\# \text{ of symbols}) \log_2 M} = \frac{P_s(\gamma_s)}{\log_2 M}.
\]

(6.8)

Also, since we have \(\log_2 M \) bits per symbol, if we assume that each bit is assigned roughly equal energy we have \(\gamma_s = (\log_2 M) \gamma_b \). Using these approximations in (6.7) yields a simple formula for \(P_b \) as a function of \(\gamma_b \):

\[
P_b(\gamma_b) = \hat{\alpha}_M Q \left(\sqrt[4]{\hat{\beta}_M \gamma_b} \right) ,
\]

(6.9)

where \(\hat{\alpha}_M = \alpha_M / \log_2 M \) and \(\hat{\beta}_M = (\log_2 M) \beta_M \) for \(\alpha_M \) and \(\beta_M \) in (6.7).

The \(\alpha_M \) and \(\beta_M \) values for specific modulation schemes are given below.

Approximate Symbol and Bit Error Probabilities in AWGN

BPSK, BFSK: \(P_s = Q \left(\sqrt{2\gamma_s} \right), \hspace{1cm} P_b = Q \left(\sqrt{2\gamma_b} \right) \)

(6.10)

QPSK, 4QAM: \(P_s = 2 Q \left(\sqrt{\gamma_s} \right), \hspace{1cm} P_b = Q \left(\sqrt{2\gamma_b} \right) \)

(6.11)

16QAM: \(P_s = 3 Q \left(\sqrt{\frac{27}{5}} \right), \hspace{1cm} P_b = \frac{3}{4} Q \left(\sqrt{\frac{4\gamma_b}{5}} \right) \)

(6.12)

64QAM: \(P_s = \frac{7}{2} Q \left(\sqrt{\frac{27}{21}} \right), \hspace{1cm} P_b = \frac{7}{12} Q \left(\sqrt{\frac{2\gamma_b}{7}} \right) \)

(6.13)
Differential modulation techniques are generally more difficult to analyze, and their bit and symbol error probabilities cannot be found in closed form. A closed form expression for DPSK, obtained by ignoring the product of noise terms separated by a bit time \((n_k | m T_b n_k | (m + 1) T_b) = 0 \), is given as \([1]\):

\[
\text{DPSK: } P_s = P_b = \frac{1}{2} e^{-\gamma_b}. \tag{6.14}
\]

A good approximation for \(P_b \) with DQPSK is \([1]\):

\[
\text{DQPSK: } P_b \approx \int_b^\infty x \exp \left(-\frac{a^2 + x^2}{2} \right) I_0(ax) dx - \frac{1}{2} \exp \left(-\frac{a^2 + b^2}{2} \right) I_0(ab), \tag{6.15}
\]

where \(a \approx 0.765 \sqrt{\gamma_b} \) and \(b \approx 1.85 \sqrt{\gamma_b} \).

Numerical calculation of \(P_b \) for QPSK and DQPSK indicates that achieving a given error rate for DQPSK requires approximately 2.8 dB more SNR than QPSK. This is the power penalty of differential detection, which results from the fact that one symbol error in DPSK usually causes two bit errors. This increased power requirement is offset by the fact that differential detection can correct for slow phase changes in the channel and/or receiver, and moreover does not require coherent phase detection in the demodulator. Note that in AWGN BPSK and QPSK have the same performance. This is due to the fact that the in-phase and quadrature noise components are independent, so QPSK can be thought of as two BPSK signals, one transmitted along the real axis, and one along the imaginary axis.

6.3 Alternate \(Q \) Function Representation

In (6.7) we saw that \(P_s \) for general linear modulation techniques in AWGN can be approximated in terms of the Gaussian \(Q \) function. Recall that \(Q(z) \) is defined as the probability that a Gaussian random variable \(x \) with mean zero and variance one exceeds the value \(z \), i.e.

\[
Q(z) = p(x \geq z) = \int_z^\infty \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx. \tag{6.16}
\]

The \(Q \) function is not that easy to work with since the argument \(z \) is in the lower limit of the integrand, the integrand has infinite range, and the exponential function in the integral doesn’t lead to a closed form solution.

In 1991 an alternate representation of the \(Q \) function was obtained by Craig \([10]\). The alternate form is given by

\[
Q(z) = \frac{1}{\pi} \int_0^{\pi/2} \exp \left[-\frac{z^2}{2 \sin^2 \phi} \right] d\phi. \tag{6.17}
\]

Note that in this alternate form, the integrand is over a finite range that is independent of the function argument \(z \), and the integral is Gaussian with respect to \(z \). These features will prove important in using the alternate representation to derive average error probability in fading.

Craig’s motivation for deriving the alternate representation was to simplify the probability of error calculation for AWGN channels. In particular, in \([10]\) the alternate representation is used to obtain a simple \textit{exact} formula for \(P_s \) of MPSK in AWGN as

\[
P_s = \frac{1}{\pi} \int_0^{(M-1)\pi/M} \exp \left[-\frac{g_{pk} \gamma_s}{\sin^2 \phi} \right] d\phi, \tag{6.18}
\]

where \(g_{pk} = \sin^2 (\pi/M) \). Note that this formula does not correspond to the general form \(\alpha_M Q(\sqrt{\beta_M \gamma_s}) \), since the general form is an approximation while (6.18) is exact. Note also that (6.18) is obtained via a finite range integral of simple trigonometric functions that is easily computed via a numerical computer package or calculator.
6.4 Fading

In AWGN the probability of bit or symbol error depends on the received SNR or, equivalently, on γ_s or γ_b. In a fading environment the received signal power varies randomly over distance or time due to shadowing and/or multipath fading. Thus, in fading γ_b and γ_s are random variables and therefore so are $P_b(\gamma_b)$ and $P_s(\gamma_s)$. The performance metric for these random variables depends on the rate of change of the fading. There are three different performance criteria that can be used to characterize the random variables P_b or P_s:

- The outage probability, P_{out}, defined as the probability that γ_b or γ_s falls below a given value corresponding to the maximum allowable P_b or P_s.
- The average error probability, P_b or P_s, averaged over the distribution of γ_b or γ_s.

- Combined average error probability and outage, defined as the average error probability that can be achieved some percentage of time (or space).

The average probability of symbol error applies when the signal fading is on the order of a symbol time ($T_s \approx T_c$), so that the signal fade level is constant over roughly one symbol time. Since many error correction coding techniques can recover from a few bit errors, and end-to-end performance is typically not seriously degraded by a few simultaneous bit errors, the average error probability is a reasonably good figure of merit for the channel quality under these conditions.

However, if the signal power is changing slowly ($T_s << T_c$), then a deep fade will affect many simultaneous symbols. Thus, fading may lead to large error bursts, which cannot be corrected for with coding of reasonable complexity. Therefore, these error bursts can seriously degrade end-to-end performance. In this case acceptable performance cannot be guaranteed over all time or, equivalently, throughout a cell, without drastically increasing transmit power. Under these circumstances, an outage probability is specified so that the channel is deemed unusable for some fraction of time or space. Outage and average error probability are often combined when the channel is modeled as a combination of fast and slow fading, e.g. log-normal shadowing with fast Rayleigh fading.

6.4.1 Outage Probability

The outage probability relative to γ_0 is defined as $P_{out} = p(\gamma_s < \gamma_0)$, where γ_0 typically specifies the minimum SNR required for acceptable performance (e.g. for a voice signal with binary modulation, $P_b = 10^{-3}$ is an acceptable error rate since it generally can’t be detected by the human ear. Thus, for a BPSK signal in Rayleigh fading, $\gamma_b < 7$ dB would be declared an outage). In Rayleigh fading the outage probability becomes

$$P_{out} = \int_0^{\gamma_0} \frac{1}{\bar{\gamma}_s} e^{-\gamma_s / \bar{\gamma}_s} d\gamma_s = 1 - e^{-\gamma_0 / \bar{\gamma}_s}. \quad (6.19)$$

Inverting this formula shows that for a given outage probability, the required average SNR $\bar{\gamma}_s$ is

$$\bar{\gamma}_s = \frac{-\gamma_0}{-\ln(1 - P_{out})}. \quad (6.20)$$

In dB this means that $\Gamma_s = 10 \log \gamma_s$ must exceed the target $\Gamma_0 = 10 \log \gamma_0$ by $F_d = -10 \log[-\ln(1 - P_{out})]$ to maintain acceptable performance more than $100 \times (1 - P_{out})$ percent of the time. The quantity F_d is typically called the fade margin.

For example, suppose we want to determine what $\bar{\gamma}_b$ is needed for BPSK modulation in slow Rayleigh fading such that 95% of the time (or spatially) we achieve $P_b(\gamma_b) < 10^{-4}$. We find that for BPSK
modulation, in AWGN the target BER is obtained at 8.5 dB, i.e. \(P_b(10^{-8.5}) = 10^{-4} \) for \(P_b = Q(\sqrt{2\gamma_b}) \). Thus, \(\gamma_0 = 8.5 \) dB. Since we want \(P_{out} = p(\gamma_b < \gamma_0) = 0.05 \) we have

\[
\gamma_b = \frac{\gamma_0}{-\ln(1 - P_{out})} = \frac{10^{-8.5}}{-\ln(1 - 0.05)} = 21.4 \text{ dB.} \tag{6.21}
\]

6.4.2 Average Probability of Error

The average probability of error is computed by integrating the error probability in AWGN over the fading distribution:

\[
P_b = \int_0^\infty P_b(\gamma_b) p(\gamma_b) d\gamma_b \tag{6.22}
\]

where \(P_b(\gamma_b) \) is the AWGN bit error probability, given by equations (6.10)-(6.15) above. The average symbol error probability is defined in a similar manner, averaging \(P_s(\gamma_s) \) given in these same equations over the distribution of \(\gamma_s \). For a given distribution of the fading amplitude \(r \) (i.e. Rayleigh, Rician, log-normal, etc.), we compute \(p(\gamma_b) \) by making the change of variable

\[
p(\gamma_b) d\gamma_b = p(r) dr. \tag{6.23}
\]

For example, in Rayleigh fading the received signal amplitude \(r \) has the Rayleigh distribution

\[
p(r) = \frac{2}{\sigma^2} r e^{-r^2/2\sigma^2}, \quad r \geq 0, \tag{6.24}
\]

and the signal power is exponentially distributed with mean \(2\sigma^2 \). The SNR per bit for a given amplitude \(r \) is

\[
\gamma_b = \frac{r^2 T_b}{2\sigma_n^2}, \tag{6.25}
\]

where \(\sigma_n^2 = N_0/2 \) is the PSD of the noise in the in-phase and quadrature branches. Differentiating both sides of this expression yields

\[
d\gamma_b = \frac{T_b}{\sigma_n^2} r dr. \tag{6.26}
\]

Substituting (6.25) and (6.26) into (6.24) and then (6.23) yields

\[
p(\gamma_b) = \frac{T_b}{\sigma_n^2} e^{-\gamma_b T_b \sigma_n^2/\sigma^2}. \tag{6.27}
\]

Since the average SNR per bit \(\gamma_b \) is just \(\sigma^2/(T_b \sigma_n^2) \), we can rewrite (6.27) as

\[
p(\gamma_b) = \frac{1}{\gamma_b} e^{-\gamma_b/\gamma_b}, \tag{6.28}
\]

which is exponential.

Integrating (6.10) over the distribution (6.28) yields the following average probability of error for BPSK in Rayleigh fading.

\[
P_b = \frac{1}{2} \left(1 - \sqrt{\frac{\gamma_b}{1 + \gamma_b}} \right) \approx \frac{1}{4\gamma_b}, \tag{6.29}
\]

106
where the approximation holds for large γ_b. Solving (6.22) for DPSK yields

$$\mathcal{P}_b = \frac{1}{2(1 + \gamma_b)} \approx \frac{1}{2\gamma_b},$$

(6.30)

where again the approximation holds for large γ_b. Note that in the limit of large γ_b, there is an approximate 3 dB power penalty in using DPSK instead of BPSK. This was also observed in AWGN, and is the power penalty of differential detection. In practice the power penalty is somewhat smaller, since DPSK can correct for slow phase changes introduced in the channel or receiver, which are not taken into account in these error calculations.

For QPSK and DQPSK modulation, the average error probability is given by the following two approximations [1], with their asymptotic limits as γ_b gets large.

QPSK:

$$\mathcal{P}_b \approx \frac{2}{3} \left[1 - \frac{1}{4} \left(1 + \sqrt{\frac{\gamma_b}{1 + \gamma_b}} \right) \right]^2 \approx \frac{1}{3\gamma_b} \text{ for large } \gamma_b,$$

(6.31)

and

DQPSK:

$$\mathcal{P}_b \approx \frac{2}{3} \left[1 - \frac{1}{4} \left(1 + \frac{\gamma_b}{\sqrt{(1 + \gamma_b)^2 - .5}} \right) \right]^2 \approx \frac{2}{3\gamma_b} \text{ for large } \gamma_b.$$

(6.32)

Note that there is also an approximate 3 dB penalty for DQPSK relative to QPSK. It is interesting to compare bit error rates of the different modulation schemes in AWGN and fading. For all four modulation types, the bit error probability in AWGN decreases exponentially with increasing γ_b. However, in fading the bit error probability for all the modulation types decreases just linearly with increasing γ_b. Thus, the power necessary to maintain a given P_b, particularly for small values, is much higher in fading channels than in AWGN channels. For example, in Figure 6.3 we plot the error probability of BPSK and MSK in AWGN and in flat Rayleigh fading (Figure 5.3 of [4]). We see that it requires approximately 8 dB SNR to maintain a 10^{-3} bit error rate in AWGN while it requires approximately 24 dB SNR to maintain the same error rate in fading. A similar plot for the error probabilities of MQAM, which do not have a closed form solution, is shown in Figure 6.4 (Figure 5.6 of [4]). From these figures it is clear that to maintain low power requires some technique to remove the effects of fading. We will discuss some of these techniques, including diversity combining, spread spectrum, and RAKE receivers, in later chapters.

Rayleigh fading is one of the worst-case fading scenarios. In Figure 6.5 (Figure 14-3-2 of [1]) we show the average bit error probability of BPSK in Nakagami fading for different values of the Nakagami-m parameter. We see that as m increases, the fading decreases, and the average bit error probability converges to that of an AWGN channel.

6.4.3 Moment Generating Function Technique for Average P_s

In (6.7) we gave a general expression for P_s in AWGN in terms of the Gaussian Q function. We now make a slight change of notation in (6.7) setting $\alpha = \alpha_M$ and $g = .5\beta_M$ to get

$$P_s(\gamma_s) = \alpha Q(\sqrt{2g\gamma_s}),$$

(6.33)

where α and g are constants that depend on the modulation. The notation change is to obtain the error probability as an exact moment generating function, as we now show.

Using the alternate Q function representation (6.17), we get that the average error probability is given by

$$\mathcal{P}_s = \alpha \int_0^{\infty} Q(\sqrt{2g\gamma_s})p(\gamma_s) d\gamma_s = \alpha \int_0^{\infty} \frac{1}{\pi} \int_0^{\pi/2} \exp \left[-\frac{2g\gamma_s}{2\sin^2\phi} \right] d\phi p(\gamma_s) d\gamma_s.$$

(6.34)
Figure 6.3: Average P_b for BPSK in Rayleigh Fading and AWGN.

Since the inner integral is bounded, we can switch the order of integration, yielding

$$\mathcal{P}_s = \frac{\alpha}{\pi} \int_0^{\pi/2} \mathcal{M} \left(\frac{-g}{\sin^2 \phi}; \bar{\gamma}_s \right) d\phi, \quad (6.35)$$

where

$$\mathcal{M}(s; \bar{\gamma}_s) = \int_0^\infty e^{sx} p(\gamma_s) d\gamma_s \quad (6.36)$$

is a moment generating function (MGF) of the distribution $p(\gamma_s)$ and is in the form of a Laplace transform. Thus, the MGF for any distribution of interest can be computed in closed-form using classical Laplace transforms or easily computed numerically for most fading distributions of interest. The parameter $s = -g/\sin^2 \phi$ of the moment generating function depends on the modulation via g. In particular, the MGF corresponding to the most common distributions are given as

Rayleigh

$$\mathcal{M}_r \left(\frac{-g}{\sin^2 \phi}; \bar{\gamma}_s \right) = \left(1 + \frac{g}{\sin^2 \phi} \bar{\gamma}_s \right)^{-1}. \quad (6.37)$$

Rician (for Rice factor k):

$$\mathcal{M}_k \left(\frac{-g}{\sin^2 \phi}; \bar{\gamma}_s \right) = \frac{(1+k) \sin^2 \phi}{(1+k) \sin^2 \phi + g \bar{\gamma}_s} \exp \left(-\frac{k g \bar{\gamma}_s}{(1+k) \sin^2 \phi + g \bar{\gamma}_s} \right). \quad (6.38)$$

Nakagami-m

$$\mathcal{M}_m \left(\frac{-g}{\sin^2 \phi}; \bar{\gamma}_s \right) = \left(1 + \frac{g}{m \sin^2 \phi} \bar{\gamma}_s \right)^{-m}. \quad (6.39)$$

All of these functions are simple trigonometrics and are therefore easy to integrate over a finite range. For example, to compute the average probability of error for BPSK modulation in Nakagami fading, we
use the fact that for an AWGN channel BPSK has $P_b = Q(\sqrt{2\gamma_b})$, so $\alpha = 1$ and $g = 1$ in (6.33). The moment generating function for Nakagami-m fading is given by (6.39), and substituting this into (6.35) with $\alpha = g = 1$ yields

$$P_b = \frac{1}{\pi} \int_0^{\pi/2} \left(1 + \frac{\gamma_b}{m \sin^2 \phi} \right)^{-m} d\phi. \quad (6.40)$$

6.4.4 Combined Outage and Average Error Probability

When the fading environment is a superposition of both fast and slow fading, i.e. log-normal shadowing and Rayleigh fading, a common performance metric is combined outage and average error probability, where outage occurs when the slow fading falls below some target value and the average performance in nonoutage is obtained by averaging over the fast fading. We use the following notation:

- Let $\bar{\gamma}_b$ denote the average SNR due to shadowing and path loss.
- Let γ_b denote the (random) SNR due to shadowing and path loss with average value $\bar{\gamma}_b$.
- Let γ_b denote the random SNR due to path loss, shadowing, and multipath.

With this notation we can specify an average error probability P_b with some probability $1 - P_{out}$. An outage is declared when the received SNR due to shadowing and path loss alone, γ_b, falls below a given target value γ_{b_0}. When not in outage ($\gamma_b \geq \gamma_{b_0}$), the average probability of error is obtained by averaging over the distribution of the fast fading conditioned on the mean SNR:

$$P_b = \int_0^\infty P_b(\gamma_b) p(\gamma_b) \, d\gamma_b. \quad (6.41)$$

The criterion used to determine the outage target γ_{b_0} is typically based on a given maximum average probability of error, i.e. $P_b \leq P_{b_0}$, where the target γ_{b_0} must then satisfy

$$P_{b_0} = \int_0^\infty P_b(\gamma_b) p(\gamma_b | \gamma_{b_0}) \, d\gamma_b. \quad (6.42)$$
Clearly whenever $\bar{\gamma}_b > \bar{\gamma}_{b_0}$, the average error probability will be below the target value.

For example, suppose we have BPSK modulation in a channel with both log-normal shadowing ($\sigma = 8$ dB) and Rayleigh fading. The desired maximum average error probability is $P_{b_0} = 10^{-4}$, which requires $\bar{\gamma}_{b_0} = 34$ dB. We want to determine the value of $\bar{\gamma}_b$ that will insure $P_b \leq 10^{-4}$ with probability $1 - P_{\text{out}} = .95$. In other words, we must find $\bar{\gamma}_b$, the average of γ_b in both the fast and slow fading, such that $p(\bar{\gamma}_b > \bar{\gamma}_{b_0}) = 1 - P_{\text{out}}$. For log-normal shadowing we compute this as:

$$p(\bar{\gamma}_b > 34) = p\left(\frac{\bar{\gamma}_b - \bar{\gamma}_{b_0}}{\sigma} \geq \frac{34 - \bar{\gamma}_{b_0}}{\sigma}\right) = Q\left(\frac{34 - \bar{\gamma}_{b_0}}{\sigma}\right) = 1 - P_{\text{out}},$$

since $(\bar{\gamma}_b - \bar{\gamma}_{b_0})/\sigma$ is a Gauss-distributed random variable with mean zero and standard deviation one. Thus, the value of $\bar{\gamma}_b$ is obtained by substituting the values of P_{out} and σ in (6.43) and using a table of Q functions or an inversion program, which yields $(34 - \bar{\gamma}_{b_0})/8 = -1.6$ or $\bar{\gamma}_b = 46.8$ dB.

6.4.5 Effect of Channel Estimation Error on MQAM

M-QAM is a very promising modulation scheme for achieving high spectral efficiency. However, the severe amplitude and phase fluctuations inherent to wireless channels significantly degrade the BER performance of M-QAM. That is because the demodulator must scale the received signal to normalize channel gain so that its decision regions correspond to the transmitted signal constellation. This scaling process is called Automatic Gain Control (AGC). If the channel gain is estimated in error then the AGC improperly scales the received signal, which can lead to incorrect demodulation even in the absence of noise. Thus reliable communication with M-QAM requires accurate fading compensation techniques at the receiver.

Fading compensation is typically performed by using pilot symbols to estimate the channel fade level at the receiver. However, pilot symbols do not lead to perfect channel estimates, and the estimation error
can lead to bit errors. The impact of channel estimation error on the performance of MQAM modulation in Rayleigh fading was recently examined in [6]. Specifically, exact expressions for the BER of MQAM in Rayleigh fading with pilot symbols used to estimate the channel were derived. It was found that channel estimation error can lead to an irreducible error floor if the channel is changing fast enough. This result is expected, since pilot symbols will not lead to good channel estimates in fast fading channels. The results in [6] also indicate that under moderately fading channels, estimation error resulting from pilot symbol channel estimation can degrade BER performance by up to 3 dB.

6.5 Doppler Spread

When there is Doppler spread on the channel, this results in an irreducible error floor for modulation techniques using differential detection. This is due to the fact that the envelope correlation of the signal from symbol to symbol is not unity: this degrades performance of differential detection where bit decisions are based on the relative phase of the previous bit. The envelope correlation and therefore also the degradation in performance are both functions of the Doppler frequency $f_D = \nu / \lambda$ and the bit time T_b. It can be shown that for DPSK the error floor is given by $P_{\text{min}} = .5(\pi f_D T_b)^2$. The error floor for DQPSK is shown in Figure 6.6 below, taken from [5].

![Figure 6.6: Error Floor for D-QPSK with Doppler Spread.](image-url)
6.6 Intersymbol Interference

Intersymbol interference arising from delayed multipath components can also affect bit error probability. The analysis is quite complicated and will not be treated here; see [7] for a detailed study of the problem. It has been shown from analysis and simulation that if the delay spread of the channel T_m is less than one tenth the symbol period T, then acceptable performance for voice (i.e. error probability less than 10^{-3}) can be achieved without using an equalizer to compensate for ISI. However, this imposes severe constraints on the data rate. For example, the delay spread in a typical urban environment is approximately $T_m = 2.5\mu s$. To keep $T_m < .1T$ requires that the data rate not exceed 40 Kbaud, which certainly isn’t enough for high-speed data applications. In rural environments, where multipath is not attenuated to the same degree as in cities, $T_m \approx 25\mu s$, which reduces the maximum data rate to 4 Kbaud. As with Doppler spread, signaling at rates where $T_m > .1T$ imposes an irreducible error floor on the probability of error. Figure 6.7, obtained by simulation in [7], shows this error floor for several modulation types as a function of $d' = T_m / T$.
Figure 6.7: Error Floor due to ISI.
Bibliography

Chapter 7

Diversity

In Chapter 6 we saw that both Rayleigh fading and log normal shadowing induce a very large power penalty on the performance of modulation over wireless channels. One of the most powerful techniques to mitigate the effects of fading is to use diversity-combining of independently fading signal paths. Diversity-combining uses the fact that independent signal paths have a low probability of experiencing deep fades simultaneously. Thus, the idea behind diversity is to send the same data over different radio paths. These independent paths are combined in some way such that the fading of the resultant signal is reduced. For example, from (3.25) in Chapter 3, if in Rayleigh fading we use two receive antennas separated by half a wavelength, the fading amplitude measured by each antenna is approximately independent. Thus, it is unlikely that both antennas experience deep fades at the same time. By taking the strongest signal between the two antennas, we will obtain a much better signal than if we just had one antenna. This combining method, called switched diversity, will be discussed in more detail below.

There are two main types of diversity associated with cellular systems: microdiversity, which mitigates the effect of Rayleigh fading, and macrodiversity, which mitigates the effects of shadowing from buildings and objects. Macrodiversity is generally implemented by having several base stations in a given area, and allowing each mobile to connect or handoff to the base station with the strongest signal path, rather than to the closest base station. Thus, macrodiversity is more of a systems technique than a communications technique, and we will therefore defer its discussion until we talk about channel allocation in multiuser systems.

7.1 Realization of Independent Fading Paths

There are many ways of achieving independent radio paths. As mentioned above, one method is to use multiple receive antennas, also called an antenna array, where the elements of the array are separated in distance. This type of diversity is referred to as space diversity. Note that with space diversity, independent fading paths are realized without an increase in signal power or bandwidth. The separation between antennas must be such that the fading amplitudes corresponding to each antenna are approximately independent. As mentioned above and discussed in Chapter 3, in Rayleigh fading the minimum antenna separation required for independent fading given isotropic transmit and receive antennas is approximately one half wavelength (\.38\lambda\) to be exact). If the transmit or receive antennas are directional (which is common at the base station if the system has cell sectorization), then the multipath is confined to a small angle relative to the LOS ray, which means that a larger antenna separation is required to get independent fading samples [1].

A second method of achieving diversity is by using either two transmit antennas or two receive an-
tennas with different polarization (e.g. vertically and horizontally polarized waves). The two transmitted waves follow the same path however, since the multiple random reflections distribute the power nearly equally relative to both polarizations, the average receive power corresponding to either polarized antenna is approximately the same. Since the scattering angle relative to each polarization is random, it is highly improbable that signals received on the two differently polarized antennas would be simultaneously in deep fades. There are two disadvantages of polarization diversity. First, you can have at most two diversity branches, corresponding to the two types of polarization (although the typical gain associated with more than two diversity branches is relatively modest). The second disadvantage is that polarization diversity loses effectively half the power (3 dB) since the transmit or receive power is divided between the two differently polarized antennas.

Directional antennas provide angle, or directional, diversity by restricting the receive antenna beamwidth to a small angle. In the extreme, if the angle is very small then only one (or none) of the multiple rays will fall within the receive beamwidth, so there is no multipath fading. However, this diversity technique requires that you either have directional antennas pointing in all possible directions or that you know the angle of arrival of at least one of the multipath components (preferably the strongest one). Steerable antenna arrays can be used to form directional antennas which adapt to the incoming angle of the strongest multipath component [2]. However, antenna array processing is generally very computationally complex.

Frequency diversity is achieved by transmitting the same signal at different carrier frequencies, where the carriers are separated by the coherence bandwidth of the channel. Frequency diversity is also referred to as multicarrier modulation. Similarly, time diversity is achieved by transmitting the same signal at different times, where the time difference is greater than the channel coherence time (the inverse of the channel Doppler spread). Time diversity can also be achieved through coding and interleaving, as will be discussed in a subsequent chapter. Clearly time diversity can’t be used for stationary applications, since the corresponding Doppler spread is zero.

7.2 Diversity System Model

A diversity system combines the independent fading paths to obtain a resultant signal which is then passed through a standard demodulator. The combining can be done in several ways which vary in complexity and overall performance. We will use space diversity as a reference to describe the diversity systems and the different combining techniques, although the techniques can be applied to any type of diversity. Thus, the combining techniques will be defined as operations on an antenna array.

Most combining techniques are linear: the output of the combiner is just a weighted sum of the different fading paths or branches, as shown in Figure 7.1. Specifically, when all but one of the complex α_is are zero, the combiner is referred to as a selection-combiner, since it selects one path which is passed to the combiner output. When all the α_is are nonzero, the combiner is called a gain-combiner, since it weights each of the paths by a different amount. For ideal coherent detection, the weighting can be performed either before detection (predetection) or after detection (post-detection) with essentially no difference in performance. There is a slight performance degradation in using predetection combining for differentially coherent detection. Usually combining is performed post-detection, since the branch signal power and/or phase is required to determine the appropriate weights. Post-detection combining requires a dedicated receiver for each branch, which increases the hardware complexity and cost, particular for a large number of branches. In post-detection combining the α_is also perform cophasing, so that each signal path entering the summer is just a real number.

The main purpose of diversity is to combine the independent fading paths to mitigate the effects of fading. The signal output from the combiner equals the original transmitted signal $s(t)$ multiplied by a
random complex amplitude term \(\alpha_\Sigma = \sum_i \alpha_i r_i e^{j\theta_i} \) that results from the path combining. This complex amplitude term results in a random SNR \(\gamma_\Sigma \) at the combiner output, where the distribution of \(\gamma_\Sigma \) is a function of the number of diversity paths, the fading distribution on each path, and the combining technique, as shown in more detail below. Since the combiner output is fed into a standard demodulator for the transmitted signal \(s(t) \), the performance of the diversity system in terms of \(P_b \) and \(P_{out} \) is as defined in Section 6.4.1, i.e.

\[
\overline{P}_b = \int_0^\infty P_b(\gamma_\Sigma) p(\gamma_\Sigma) d\gamma_\Sigma,
\]

where \(P_b(\gamma_\Sigma) \) is the probability of bit error for demodulation of \(s(t) \) in AWGN with SNR \(\gamma_\Sigma \), and

\[
P_{out} = p(\gamma_\Sigma \leq \gamma_0),
\]

for some target SNR value \(\gamma_0 \).

In the following subsections we will describe the different combining techniques in more detail. These techniques entail various tradeoffs between performance and complexity.

7.3 Selection Combining

In selection combining, the strategy is to choose the branch with the highest SNR \(r_i^2/N_i \) or, more practically, the highest S+N, since the noise \(N_i = N \) is assumed to be the same on all branches. This method requires each branch to have its own dedicated receiver, since \(S+N \) must be computed separately for each branch. With this selection technique, the path output from the combiner has an SNR equal to the maximum SNR of all the branches.

Assume that we have \(M \) branches with uncorrelated Rayleigh fading amplitudes \(r_i \). The instantaneous SNR on the \(i \)th branch is therefore given by \(\gamma_i = r_i^2/N \). Defining the average SNR on the \(i \)th branch as \(\overline{\gamma}_i = E[\gamma_i] \), the SNR distribution will be exponential:

\[
p(\gamma_i) = \frac{1}{\overline{\gamma}_i} e^{-\gamma_i/\overline{\gamma}_i}.
\]
From (6.19), the outage probability for a target γ_0 on the ith branch in Rayleigh fading is

$$P_{out}(\gamma_0, \gamma_i) = 1 - e^{-\gamma_0/\gamma_i}.$$

(7.4)

The outage probability of the selection-combiner, defined as the probability that the SNR of the combiner output γ_Σ is less than some target γ_0, is given by

$$P_{out}(\gamma_0) = p(\gamma_\Sigma < \gamma_0) = p(\max[\gamma_1, \gamma_2, \ldots, \gamma_M] < \gamma_0) = \prod_{i=1}^{M} p(\gamma_i < \gamma_0) = \prod_{i=1}^{M} \left[1 - e^{-\gamma_0/\gamma_i}\right].$$

(7.5)

If the average SNR for all of the branches are the same ($\gamma_i = \gamma$ for all i), then this reduces to

$$p(\gamma_\Sigma < \gamma_0) = \left[1 - e^{-\gamma_0/\gamma}\right]^M,$$

(7.6)

and the distribution of γ_Σ is obtained by differentiating:

$$p_{\gamma_\Sigma}(\gamma) = p(\gamma_\Sigma = \gamma) = \frac{M}{\gamma} \left[1 - e^{-\gamma/\gamma}\right]^{M-1} e^{-\gamma/\gamma}.$$

(7.7)

The average SNR of the combiner output is then given by

$$\bar{\gamma}_\Sigma = \frac{1}{M} \int_{0}^{\infty} \gamma p_{\gamma_\Sigma}(\gamma) d\gamma \nonumber$$

$$= \frac{1}{M} \int_{0}^{\infty} \frac{M}{\gamma} \left[1 - e^{-\gamma/\gamma}\right]^{M-1} e^{-\gamma/\gamma} d\gamma$$

$$= \frac{1}{\gamma} \sum_{i=1}^{M} \frac{1}{i}.$$

(7.8)

From this expression we see that the average SNR gain increases with M, but not linearly. The biggest gain is obtained by going from no diversity to two-branch diversity. Increasing the number of diversity branches from two to three will give much less gain than going from one to two, and in general increasing M yields diminishing returns in terms of the SNR gain. This is clearly illustrated in Figure 7.2, which shows $P_{out}(\gamma_0)$ versus γ_0/γ. We see that there is dramatic improvement even with just two-branch selection combining: a 10 dB reduction in required SNR for a 1% outage probability, and a 20 dB reduction for a .01% outage.

In the above derivation we assume that there is no correlation between the branch amplitudes. If the correlation is nonzero, then there is a slight degradation in performance which is almost negligible for correlations below 0.5. Derivation of the exact degradation can be found in [1].

To obtain the probability of error with diversity, we just integrate the error probability without fading over (7.7). Specifically, assuming that γ_Σ is the SNR/bit output from the combiner (or making the appropriate transformation from γ_Σ to γ_0) yields

$$\overline{P_b} = \int_{0}^{\infty} P_b(\gamma) p_{\gamma_\Sigma}(\gamma) d\gamma,$$

(7.9)

where $P_b(\gamma)$ is the BER in AWGN of the given modulation technique (Chapter 6).
7.4 Threshold Combining

Selection combining is difficult to implement since it requires a comparison between all M branches simultaneously. A simpler type of combining, called threshold combining, scans each of the branches in sequential order and outputs the first signal with a power level above a constant threshold. As long as the selected signal remains above the desired threshold, the combiner outputs that signal. If the selected signal falls below the threshold, the combiner begins another sequential search. If all signals are below the threshold, then the combiner has two options: it can switch to another signal at random, or it can examine all the signals and choose the best. For two-branch diversity, the first option is called switch and stay, since the combiner automatically switches to the other branch when the power of the branch it is currently using falls below the threshold. This method is clearly easier to implement than the second option, also referred to as switch and examine, which requires comparing both branches and choosing the branch with the higher power. The switch and stay combining technique is illustrated in Figure 7.3.

To determine outage probability and average error rate, we need to know the distribution of the SNR at the combiner output, denoted again by $\bar{\gamma}_C$. Clearly this distribution will depend on the threshold level
\[P_{\text{out}}(\gamma_0) = p(\gamma_\Sigma < \gamma_0) = \begin{cases} (1 + P_T)P_0 - P_T, & \gamma_0 \geq \gamma_T \\ P_TP_0, & \gamma_0 < \gamma_T \end{cases}, \quad (7.9) \]

where \(P_T = P_{\text{out}}(\gamma_T, \bar{\gamma}) = 1 - e^{-\gamma_T/\bar{\gamma}} \) and \(P_0 = P_{\text{out}}(\gamma_0, \bar{\gamma}) = 1 - e^{-\gamma_0/\bar{\gamma}} \). Figure 7.4 plots \(1 - P_{\text{out}}(\gamma_0) \) as a function of \(\gamma_0/\bar{\gamma} \) and the threshold level \(\gamma_T \). Note that the switch and stay performance lies between that of no diversity (\(M=1 \)) and ideal selection (the switch and examine algorithm).

7.5 Maximal Ratio Combining

In the above two techniques, the output of the combiner was equal to the signal on one of the branches. In maximal ratio combining the output is a weighted sum of all branches, so the \(a_i \)'s in Figure 7.1 are all nonzero. Since the signals are cophased, \(a_i = a_i e^{-j\theta_i} \), where \(\theta_i \) is the phase of the incoming signal on the \(i \)th branch. Thus, the envelope of the combiner output will be \(r = \sum_{i=1}^{M} a_ir_i \). Assuming the same noise power \(N \) in each branch yields a total noise power \(N_{\text{tot}} \) at the combiner output of \(N_{\text{tot}} = \sum_{i=1}^{M} a_i^2N \). Thus, the output SNR of the combiner is

\[\gamma_\Sigma = \frac{r^2}{N_{\text{tot}}} = \frac{1}{N} \left(\sum_{i=1}^{M} a_i r_i \right)^2. \quad (7.10) \]

The goal is to maximize \(\gamma_\Sigma \), and it is intuitively clear that the weights \(a_i^2 \) which maximize the output SNR are proportional to the branch SNRs \(r_i^2/N \). We find the maximizing \(a_i \)'s by taking partial derivatives of 7.10 or using the Schwartz inequality [1]. Solving for the optimal weights yields \(a_i^2 = r_i^2/N \), and the
Figure 7.4: Performance of the Switch and Stay Combiner.
resulting $\gamma_\Sigma = \sum_{i=1}^{M} \gamma_i^2 / (N) = \sum_{i=1}^{M} \gamma_i$. Thus, the SNR of the combiner output is the sum of SNRs on each branch. Clearly this is far superior to the switched techniques described above and moreover, SNR increases linearly with the number of diversity branches M. To obtain the distribution of γ_Σ we take the product of the exponential moment generating or characteristic functions. Assuming equal average branch SNR γ, the distribution of γ_Σ is χ^2 with $2M$ degrees of freedom, expected value $\overline{\gamma_\Sigma} = M\overline{\gamma}$, and variance $2M\overline{\gamma}$:

$$p_{\gamma_\Sigma}(\gamma) = \frac{\gamma^{M-1}e^{-\gamma/\overline{\gamma}}}{\overline{\gamma}^M(M-1)!}, \quad \gamma \geq 0.$$ \hspace{1cm} (7.11)

The corresponding outage probability for a given threshold γ_0 is given by

$$P_{out} = p(\gamma_\Sigma < \gamma_0) = \int_0^{\gamma_0} p_{\gamma_\Sigma}(\gamma) d\gamma = 1 - e^{-\gamma_0/\overline{\gamma}} \sum_{k=1}^{M} \frac{(\gamma_0/\overline{\gamma})^{k-1}}{(k-1)!}.$$ \hspace{1cm} (7.12)

Figure 7.5 plots P_{out} for maximal ratio combining indexed by the number of diversity branches. The corresponding P_e for BPSK is plotted in Figure 5.19 of [4].

![Image of Figure 7.5: Performance of Maximal Ratio Combining.](image)

7.6 Equal-Gain Combining

Maximal-Ratio combining requires knowledge of the average branch SNR, which is difficult to measure. A simpler technique is equal-gain combining, which is essentially a maximal-ratio combiner with all of
the gains $a_i = 1$. The SNR of the combiner output, assuming equal noise power in each branch, is then given by

$$\gamma_\Sigma = \frac{1}{NM} \left(\sum_{i=1}^{M} r_i \right)^2.$$ \hspace{1cm} (7.13)

Calculating the outage probability is complicated for $M > 2$ [1, 4]. For $M = 2$ the outage probability is given by

$$P_{out}(\gamma_0) = 1 - e^{-2\gamma_0} - \sqrt{\pi \gamma R} e^{-\gamma R} \text{erf}[\sqrt{\gamma R}],$$ \hspace{1cm} (7.14)

where $\gamma_R = \gamma_0 / \bar{\gamma}$. The performance curves for all M are shown in Figure 7.6. Comparing maximal-ratio and equal-gain combining, we can show that the penalty of using equal gain combining instead of maximal ratio combining is approximately 1.3 dB, which is a small price to pay for the greatly reduced complexity of using fixed equal gains.

Figure 7.6: Performance of Equal Gain Combining.

7.7 A Unified Approach to Performance Analysis of MRC

In this section we present a unified analytical framework to determine the exact average symbol-error-rate (SER) of linearly modulated signals over fading channels with MRC diversity for a large class of fading distributions. The analyses assume independent fading paths which are not necessarily identically
distributed. In all cases the proposed approach leads to an expression of the average SER involving a single finite-range integral which can be easily computed numerically. This unified approach, based on the alternate Q function definition (6.17), greatly simplifies BER calculations for diversity channels.

7.7.1 Signal, System, and Channel Models

We assume a memoryless linear modulation technique, where the complex signal transmitted over the channel may be represented as

$$ s(t) = \sum_{i=-\infty}^{\infty} S^{(i)} e^{-j2\pi f_c t} g_{T_c}(t - iT_s), \quad (7.15) $$

where the function $g_{T_c}(\cdot)$ is a pulse shaping waveform of duration T_c seconds, f_c is the carrier frequency, and $\{S^{(i)}\}_{i=-\infty}^{\infty}$ represents the sequence of symbols that results from mapping successive k-bit blocks into one of $M = 2^k$ possible waveforms. Each complex symbol $S^{(i)}$ takes on values whose energy is denoted by E_m ($m = 1, 2, \ldots, M$) and the average energy per k-bit symbol (averaged over the set of the M waveforms’ energies) is denoted by E_s and is related to the average energy per bit, E_b, by $E_s = \log_2(M) E_b$.

We assume a multilink channel where the transmitted signal is received over L independent slowly-varying flat fading channels, as shown in Fig. 7.7. In Fig. 7.7, l is the channel index, and $\{\alpha_l\}_{l=1}^{L}$, $\{\theta_l\}_{l=1}^{L}$, and $\{\tau_l\}_{l=1}^{L}$ are the random channel amplitudes, phases, and delays, respectively. We assume that the sets $\{\alpha_l\}_{l=1}^{L}$, $\{\theta_l\}_{l=1}^{L}$, and $\{\tau_l\}_{l=1}^{L}$ are mutually independent. The first channel is assumed to be the reference channel with delay $\tau_1 = 0$ and, without loss of generality, we assume that $\tau_1 < \tau_2 < \cdots < \tau_L$. Because of the slow-fading assumption, we assume that the $\{\alpha_l\}_{l=1}^{L}$, $\{\theta_l\}_{l=1}^{L}$, and $\{\tau_l\}_{l=1}^{L}$ are all constant over a symbol interval.

The fading amplitudes $\{\alpha_l\}_{l=1}^{L}$ are assumed to be statistically independent random variables (RVs) whose mean square value $\overline{\alpha_l^2}$ is denoted by Ω_l and whose probability density function (PDF) is any of the family of distributions described below. The multilink channel model used in our analyses is sufficiently general to include the case where the different channels are not necessarily identically distributed nor even distributed according to the same family of distributions. We call this type of multilink channel a generalized multilink fading channel.

After passing through the fading channel, each replica of the signal is perturbed by complex AWGN with a one-sided power spectral density which is denoted by $2N_l$ (W/Hz). The AWGN is assumed to be statistically independent from channel to channel and independent of the fading amplitudes $\{\alpha_l\}_{l=1}^{L}$. Hence, the instantaneous SNR per symbol of the lth channel is given by $\gamma_l = \frac{\overline{\alpha_l^2} E_s}{N_l}$, where E_s (J) is the energy per symbol.

Our analysis is applicable to the different fading models described in Chapter 2-3. We now review the models for multipath fading and shadowing, and also introduce some additional hybrid models that often occur in practice and are well-suited to our analysis technique.

Rayleigh The Rayleigh distribution is frequently used to model multipath fading with no direct line-of-sight (LOS) path. In this case the lth channel fading amplitude α_l is distributed according to

$$ p_{\alpha_l}(\alpha_l; \Omega_l) = \frac{2 \alpha_l}{\Omega_l} \exp\left(-\frac{\alpha_l^2}{\Omega_l}\right) ; \quad \alpha_l \geq 0, \quad (7.16) $$
Figure 7.7: Multilink channel model.
and hence the instantaneous SNR per symbol of the \(l \)th channel, \(\gamma_l \), is distributed according to an exponential distribution given by

\[
p_{\gamma_l}(\gamma_l; \bar{\gamma}_l) = \frac{1}{\bar{\gamma}_l} \exp \left(-\frac{\gamma_l}{\bar{\gamma}_l} \right) ; \quad \gamma_l \geq 0,
\]

(7.17)

where \(\bar{\gamma}_l = \frac{\Omega E_{l0}}{N_l} \) denotes the average SNR per symbol of the \(l \)th channel.

Nakagami-\(q \) (Hoyt) The Nakagami-\(q \) distribution, also referred to as the Hoyt distribution [5], is given in [6, Eqn. (52)] by

\[
p_{\alpha_l}(\alpha_l; \Omega_l, q_l) = \frac{(1 + q_l^2) \alpha_l}{q_l \Omega_l} \exp \left(-\frac{(1 + q_l^2) \alpha_l^2}{4 q_l^2 \Omega_l} \right) I_0 \left(\frac{(1 - q_l^4) \alpha_l^2}{4 q_l^2 \Omega_l} \right) ; \quad \alpha_l \geq 0,
\]

(7.18)

where \(I_0(\cdot) \) is the zero-th order modified Bessel function of the first kind, and \(q_l \) is the Nakagami-\(q \) fading parameter which ranges from 0 to 1. Using a change of variables, it can be shown that the SNR per symbol of the \(l \)th channel, \(\gamma_l \), is distributed according to

\[
p_{\gamma_l}(\gamma_l; \bar{\gamma}_l, q_l) = \frac{(1 + q_l^2)}{2 q_l \bar{\gamma}_l} \exp \left(-\frac{(1 + q_l^2) \gamma_l}{2 q_l \bar{\gamma}_l} \right) I_0 \left(\frac{(1 - q_l^4) \gamma_l}{2 q_l \bar{\gamma}_l} \right) ; \quad \gamma_l \geq 0.
\]

(7.19)

The Nakagami-\(q \) distribution spans the range from one-sided Gaussian fading (\(q_l = 0 \)) to Rayleigh fading (\(q_l = 1 \)).

Nakagami-\(n \) (Rice) The Nakagami-\(n \) distribution is also known as the Rice distribution [7]. It is often used to model propagation paths consisting of one strong direct direct LOS component and many random weaker components. Here the \(l \)th channel fading amplitude follows the distribution [6, Eqn. (50)]

\[
p_{\alpha_l}(\alpha_l; \Omega_l, n_l) = \frac{2 (1 + n_l^2)}{\Omega_l} e^{-n_l^2} \frac{\alpha_l}{2} \exp \left(-\frac{(1 + n_l^2) \alpha_l^2}{\Omega_l} \right) I_0 \left(2 \sqrt{n_l \alpha_l} \sqrt{1 + n_l^2} \right) ; \quad \alpha_l \geq 0,
\]

(7.20)

where \(n_l \) is the Nakagami-\(n \) fading parameter which ranges from 0 to \(\infty \) and which is related to the Rician \(K \) factor by \(K_l = n_l^2 \). Here the SNR per symbol of the \(l \)th channel, \(\gamma_l \), is distributed according to a non-central chi-square distribution given by

\[
p_{\gamma_l}(\gamma_l; \bar{\gamma}_l, n_l) = \frac{(1 + n_l^2)}{\bar{\gamma}_l} \exp \left(-\frac{(1 + n_l^2) \gamma_l}{\bar{\gamma}_l} \right) I_0 \left(2 n_l \sqrt{1 + n_l^2} \frac{\gamma_l}{\bar{\gamma}_l} \right) ; \quad \gamma_l \geq 0.
\]

(7.21)

The Nakagami-\(n \) distribution spans the range from Rayleigh fading (\(n_l = 0 \)) to no fading (constant amplitude) (\(n_l = \infty \)).

Nakagami-\textit{m} The Nakagami-\textit{m} PDF is in essence a central chi-square distribution given by [6, Eqn. (11)]

\[
p_{\alpha_l}(\alpha_l; \Omega_l, m_l) = \frac{2 m_l^{m_l} \alpha_l^{2m_l - 1}}{\Omega_l^{m_l} \Gamma(m_l)} \exp \left(-\frac{m_l \alpha_l^2}{\Omega_l} \right) ; \quad \alpha_l \geq 0,
\]

(7.22)

128
where \(\Gamma(.) \) is the gamma function, and \(m_t \) is the Nakagami-\(m \) fading parameter which ranges from \(1/2 \) to \(\infty \). In this case the SNR per symbol, \(\gamma_l \), of the \(l \)th channel is distributed according to a gamma distribution given by

\[
p_{\gamma_l}(\gamma_l; m_t, m_t) = \frac{m_t^{m_t} \Gamma(m_t)}{\gamma_l^m \Gamma(m_t)} \exp\left(-\frac{m_t}{\gamma_l}\right) \quad \gamma_l \geq 0.
\]

(7.23)

The Nakagami-\(m \) distribution spans via the \(m \) parameter the widest range of fading among all the multipath distributions we consider. For instance, it includes the one-sided Gaussian distribution \((m_t = 1/2) \) and the Rayleigh distribution \((m_t = 1) \) as special cases. In the limit as \(m_t \rightarrow +\infty \), the Nakagami-\(m \) fading channel converges to a nonfading AWGN channel.

Log-normal Shadowing In log-normal shadowing the \(l \)th path SNR per symbol \(\gamma_l \) has a PDF given by the standard log-normal expression

\[
p_{\gamma_l}(\gamma_l; \mu_l, \sigma_l) = \frac{10}{\ln 10} \frac{1}{\sqrt{2\pi} \sigma_l} \exp\left[-\frac{(10 \log_{10} \gamma_l - \mu_l)^2}{2 \sigma_l^2}\right],
\]

(7.24)

where \(\mu_l \) (dB) and \(\sigma_l \) (dB) are the mean and the standard deviation of 10 \(\log_{10} \gamma_l \), respectively. Next we consider composite multipath/shadowing channels.

Composite Multipath/Shadowing A composite multipath/shadowed fading environment consists of multipath fading superimposed on log-normal shadowing. In this environment the receiver does not average out the envelope fading due to multipath but rather reacts to the instantaneous composite multipath/shadowed signal [8, Sect. 2.4.2]. This is typically the scenario in congested downtown areas with slow moving pedestrians and vehicles [9, 10, 11]. This type of composite fading is also observed in land-mobile satellite systems subject to vegetative and/or urban shadowing [12, 13, 14, 15, 16]. There are two approaches and various combinations suggested in the literature for obtaining the composite distribution. Here, as an example, we present the composite gamma/log-normal PDF introduced by Ho and Stüber [11]. This PDF arises in Nakagami-\(m \) shadowed environments and is obtained by averaging the gamma distributed signal power (or equivalently the SNR per symbol) (7.23) over the conditional density of the log-normally distributed mean signal power (or equivalently the average SNR per symbol) (7.24), giving the following PDF for the \(l \)th channel:

\[
p_{\gamma_l}(\gamma_l; \mu_l, m_t, \sigma_l) = \int_0^\infty \frac{m_t^{m_t} \Gamma(m_t)}{w^{m_t} \Gamma(m_t)} \exp\left(-\frac{m_t \gamma_l}{w}\right) \frac{10}{\ln 10} \frac{1}{\sqrt{2\pi} \sigma_l} \exp\left[-\frac{(10 \log_{10} w - \mu_l)^2}{2 \sigma_l^2}\right] \, dw.
\]

(7.25)

For the special case where the multipath is Rayleigh distributed \((m_t = 1) \), (7.25) reduces to a composite exponential/log-normal PDF which was initially proposed by Hansen and Meno [10].

Combined (Time-Shared) Shadowed/Unshadowed From their land-mobile satellite channel characterization experiments, Lutz et al. [15] and Barts and Stutzman [17] found that the overall fading process for land-mobile satellite systems is a convex combination of unshadowed multipath fading and a composite multipath/shadowed fading. Here, as an example, we present in more detail the Lutz et al. model [15]. When no shadowing is present, the fading follows a Rice (Nakagami-\(n \)) PDF. On the other hand when shadowing is present, it is assumed that no direct LOS path exists and the received signal power (or equivalently SNR per bit) is assumed to follow an exponential/log-normal (Hansen-Meno) PDF [10]. The
combination is characterized by the shadowing time-share factor which is denoted by A, $0 \leq A \leq 1$. The resulting combined PDF is given by

$$p_{\gamma_l}(\gamma_l; A_l, \bar{\gamma}_l^t, K_l; \mu_l^t, \sigma_l) = (1 - A_l) \ p_\gamma(\gamma_l; \bar{\gamma}_l^t, n_l) + A_l \ p_{\gamma_l}(\gamma_l; 1, \mu_l^t, \sigma_l), \quad (7.26)$$

where $\bar{\gamma}_l^t$ is the average SNR per symbol during the unshadowed fraction of time, and μ_l^t is the average of $10 \log_{10} \gamma_l$ during the shadowed fraction of time. The overall average SNR per symbol, $\bar{\gamma}_l$, is then given by

$$\bar{\gamma}_l = (1 - A_l) \ \bar{\gamma}_l^t + A_l \ 10^{\frac{\mu_l^t}{10} + \frac{\text{10log}_{10} \sigma_l^2}{200}}. \quad (7.27)$$

7.7.2 MRC Receiver

We assume an L branch (finger) MRC receiver which is the optimal since it results in a maximum likelihood receiver [8, p. 244]. For equally-likely transmitted symbols, the total conditional SNR per symbol, γ_l, at the output of the MRC combiner is given by [8, p.246, Eqn. (5.98)]

$$\gamma_l = \sum_{l=1}^{L} \gamma_l. \quad (7.28)$$

7.7.3 Product Form Representation of the Conditional BER

The user’s conditional BER, $P_b \left(E | \{ \gamma_l \}_{l=1}^{L} \right)$, is given by

$$P_b \left(E | \{ \gamma_l \}_{l=1}^{L} \right) = Q \left(\sqrt{2 g \ \gamma_l} \right), \quad (7.29)$$

where $g = 1$ for coherent BPSK [18, Eqn. (4.55)], $g = 1/2$ for coherent orthogonal BFSK [18, Eqn. (4.59)], $g = 0.715$ for coherent BFSK with minimum correlation [18, Eqn. (4.63)], and $Q(.)$ is the Gaussian Q-function traditionally defined by

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-t^2/2} \ dt. \quad (7.30)$$

Although (7.29) appears to be a very simple expression, it is often inconvenient when further analyses are required. In particular, our goal is to evaluate the performance of the system in terms of users’ average BER, and for this purpose the conditional BER (7.29) has to be statistically averaged over the random parameters $\{\gamma_l\}_{l=1}^{L}$. This requires the integration of the Gaussian Q-function over these parameters, which is difficult since the argument of the function is in the lower limit of the integral. The classical approach to bypass this problem is to first find the PDF of γ_l and then average (7.29) over that PDF. In some cases of i.i.d. channels, the PDF of γ_l can be found which then often leads to simple closed-form expressions for the average BER. However, it is more difficult to find a simple expression for the PDF of γ_l when the channels have the same distribution (e.g., Nakagami-\alpha (Rice)) but with different parameters (e.g., different average fading powers and/or different fading parameters). The most difficult case occurs when the PDFs of the different channels come from different families of distributions and in this case finding the PDF of γ_l appears intractable.

The key concept in our approach is to rely on an alternate representation of the Gaussian Q-function. This representation allows us to obtain an elegant analytical expression for the average BER of the generalized multilink channel model which heretofore resisted a simple solution. The alternate representation
was proposed by Craig who showed that the Gaussian Q-function could be represented in the following form, repeated from (6.17):

$$Q(x) = \frac{1}{\pi} \int_0^{\pi/2} \exp \left(-\frac{x^2}{2\sin^2 \phi} \right) d\phi; \quad x \geq 0,$$

(7.31)

which can also be implied by the earlier work of Weinstein [20] and by Pawula et al. [21]. A simple derivation of this alternate representation of the Gaussian Q-function is given in Appendix A-1. This representation has the advantage of finite integration limits which are independent of the argument x, and also has an integrand which is Gaussian in the argument x. Using the alternate representation of the Gaussian-Q function (7.31) in (7.29) the conditional BER (7.29), may be rewritten in a more desirable product form given by

$$P_b \left(E | \{ \gamma_l \}_{l=1}^{L} \right) = \frac{1}{\pi} \int_0^{\pi/2} \exp \left(-\frac{g \gamma}{\sin^2 \phi} \right) d\phi = \frac{1}{\pi} \int_0^{\pi/2} \prod_{l=1}^{L} \exp \left(-\frac{g \gamma_l}{\sin^2 \phi} \right) d\phi.$$

(7.32)

This form of the conditional BER is more desirable since we can first independently average over the individual statistical distributions of the γ_l’s, and then perform the integral over ϕ, as described in more detail below.

7.7.4 Average BER with Single Channel Reception ($L = 1$)

Since the fading is assumed to be independent of the AWGN, the unconditional BER, $P_b(E)$, is obtained by averaging the single channel conditional BER, $P_b(\gamma)$, given by (7.32) for $L = 1$, over the underlying fading RV giving

$$P_b(E) = \int_0^{\infty} P_b(\gamma) \ p_r(\gamma; \tau, i) \ d\gamma,$$

(7.33)

where i is the fading parameter(s) associated with the distribution $p_r(\gamma; \tau, i)$ and is hence denoted by r^1 q, n, m, σ, $m\sigma$, and $AK\sigma$ for the Rayleigh, Nakagami-q (Hoyt), Nakagami-n (Rice), Nakagami-m, log-normal shadowing, composite multipath/shadowing, and combined (time-shared) shadowed/unshadowed PDFs, respectively. Substituting (7.32) for $L = 1$ into (7.33), then interchanging the order of integration, yields

$$P_b(E) = \frac{1}{\pi} \int_0^{\pi/2} \mathcal{M}_i \left(-\frac{g}{\sin^2 \phi}; \tau \right) d\phi,$$

(7.34)

where

$$\mathcal{M}_i(s; \tau) \triangleq \int_0^{\infty} p_r(\gamma; \tau, i) \ e^{s\gamma} \ d\gamma$$

(7.35)

is the moment generating function (MGF) of the SNR per symbol and is in the form of a Laplace transform. The form of the average BER in (7.34) is interesting in that the MGFs can either be obtained in closed-form with the help of classical Laplace transforms or can alternatively be efficiently computed by using Gauss-Hermite quadrature integration [22, p. 890, Eqn. (25.4.46)] for all previously mentioned fading channel models. We now evaluate these integrals for each of the fading models described in Section II-B. In Section II-C we will use these integrals to obtain the average BER of binary signals with multichannel reception.

\footnote{Note that for Rayleigh fading, the PDF has no dependency on r, and the symbol r is just used to identify the Rayleigh case.}
Multipath Fading

Rayleigh Substituting (7.17) into (7.35) then using the Laplace transform [23, Eqn. (1), p. 1178]

$$\int_0^\infty e^{-sx} \, dx = \frac{1}{s}; \quad s > 0,$$

(7.36)
yields

$$M_r\left(\frac{g}{\sin^2 \phi}; \gamma \right) = \left(1 + \frac{g \gamma}{\sin^2 \phi} \right)^{-1}.
$$

(7.37)
Substituting (7.37) in (7.34) then using [23, p. 185, Eqn. (2.562.1)], one can proceed further to obtain the well-known closed-form expression for the average BER over Rayleigh fading [24, Eqn. (7.3.7) and Eqn. (7.3.8)]

$$P_b(E) = \frac{1}{2} \left(1 - \sqrt{\frac{g \gamma}{1 + g \gamma}} \right).$$

(7.38)

Nakagami-q (Hoyt) Substituting (7.19) into (7.35) then using the Laplace transform [23, Eqn. (109), p. 1182]

$$\int_0^\infty I_0(u x) \, e^{-sx} \, dx = \left(s^2 - u^2 \right)^{-1/2}; \quad s > \left| u \right| \ge 0,
$$

(7.39)
yields

$$M_q\left(\frac{g}{\sin^2 \phi}; \gamma \right) = \left(1 + \frac{2 g \gamma}{\sin^2 \phi} + \frac{4 q^2 g^2 \gamma^2}{(1 + q^2) \sin^4 \phi} \right)^{-1/2}.
$$

(7.40)

Nakagami-n (Rice with K factor $K = n^2$) Substituting (7.21) into (7.35) then using the Laplace transform [22, Eqn. (29.3.81), p. 1026]

$$\int_0^\infty I_0(u \sqrt{x}) \, e^{-sx} \, dx = \frac{e^{u^2/(4s)}}{s}; \quad s > 0,$$

(7.41)
yields

$$M_n\left(\frac{g}{\sin^2 \phi}; \gamma \right) = \frac{(1 + n^2) \sin^2 \phi}{(1 + n^2) \sin^2 \phi + g \gamma} \exp \left(-\frac{n^2 g \gamma}{(1 + n^2) \sin^2 \phi + g \gamma} \right).
$$

(7.42)
Nakagami-m Substituting (7.23) into (7.35) then using the Laplace transform [23, Eqn. (3), p. 1178]

$$\int_0^\infty x^\nu e^{-sx} \, dx = \frac{\Gamma(\nu + 1)}{s^{\nu+1}}; \quad s > 0, \nu > -1,
$$

(7.43)
yields

$$M_m\left(\frac{g}{\sin^2 \phi}; \gamma \right) = \left(1 + \frac{g \gamma}{m \sin^2 \phi} \right)^{-m}.
$$

(7.44)
As a side result we show in Appendix B that by substituting (7.44) in (7.34) then using an equivalence with a known result, we obtain a closed-from expression for trigonometrics integrals which do not exist in classical tables of integrals such as [22, 23]. These integrals can be used to simplify calculations involving for example the performance BPSK and M-PSK with selection diversity over correlated Nakagami-m fading channels [25].

132
Log-normal Shadowing

If the channel statistics follow a log-normal distribution, it is straightforward to show that $\mathcal{M}_\sigma(s; \mu)$ can be accurately approximated by Gauss-Hermite integration yielding

$$\mathcal{M}_\sigma \left(- \frac{g}{\sin^2 \phi}; \mu \right) \simeq \frac{1}{\sqrt{\pi}} \sum_{n=1}^{N_p} H_{x_n} \exp \left(- \frac{g \ 10(\sqrt{2} \sigma x_n + \mu)/10}{\sin^2 \phi} \right), \quad (7.45)$$

where N_p is the order of the Hermite polynomial, $H_{N_p}(x)$. Setting N_p to 20 is typically sufficient for excellent accuracy. In (7.45) x_n are the zeros of the N_p-order Hermite polynomial, and H_{x_n} are the weight factors of the N_p-order Hermite polynomial and are given by

$$H_{x_n} = \frac{2^{N_p-1} N_p! \sqrt{\pi}}{N_p^2 H_{N_p-1}(x_n)}. \quad (7.46)$$

Both the zeros and the weights factors of the Hermite polynomial are tabulated in [22, Table (25.10), p. 924] for various polynomial orders N_p.

Composite Multipath/Shadowing

If the channel statistics follow a gamma/log-normal distribution, it is straightforward to show that the MGF $\mathcal{M}_{m\sigma}(s; \mu)$ can be accurately evaluated by using (7.43) followed by a Gauss-Hermite integration yielding

$$\mathcal{M}_{m\sigma} \left(- \frac{g}{\sin^2 \phi}; \mu \right) \simeq \frac{1}{\sqrt{\pi}} \sum_{n=1}^{N_p} H_{x_n} \left(1 + \frac{g \ 10(\sqrt{2} \sigma x_n + \mu)/10}{m \sin^2 \phi} \right)^{-m}. \quad (7.47)$$

Combined (Time-Shared) Shadowed/Unshadowed

If the channel statistics follow a combined Lutz et al. distribution, it is straightforward to show that the MGF $\mathcal{M}_{AK\sigma}(s; \tilde{\gamma}^u, \mu^s)$ can be broken into two terms, one which can be evaluated in closed-form and the other which can be accurately approximated by Gauss-Hermite integration yielding

$$\mathcal{M}_{AK\sigma} \left(- \frac{g}{\sin^2 \phi}; \tilde{\gamma}^u, m\mu^s \right) \simeq (1 - A) \mathcal{M}_n \left(- \frac{g}{\sin^2 \phi}; \tilde{\gamma}^u \right) + A \mathcal{M}_{m\sigma} \left(- \frac{g}{\sin^2 \phi}; \mu^s \right), \quad (7.48)$$

with $n = \sqrt{K}$ in $\mathcal{M}_n(s; \tilde{\gamma}^u)$ and $m = 1$ in $\mathcal{M}_{m\sigma}(s; \mu^s)$.

7.7.5 Average BER with Multichannel Reception ($L > 1$)

To obtain the unconditional BER, $P_b(E)$, when multichannel reception is used, we must average the multichannel conditional BER, $P_b(E|\gamma_l \epsilon_{l=1}^L)$, over the joint PDF of the instantaneous SNR sequence $\{\gamma_l\}_{l=1}^L$, namely $p_{\gamma_1, \gamma_2, \ldots, \gamma_L}(\gamma_1, \gamma_2, \ldots, \gamma_L)$. Since the RV’s $\{\gamma_l\}_{l=1}^L$ are assumed to be statistically independent, then $p_{\gamma_1, \gamma_2, \ldots, \gamma_L}(\gamma_1, \gamma_2, \ldots, \gamma_L) = \prod_{l=1}^L p_{\gamma_l}(\gamma_l; \tilde{\gamma}_l, i_l)$, and the averaging procedure results in

$$P_b(E) = \int_0^\infty \int_0^\infty \cdots \int_0^\infty \underbrace{P_b(\{\gamma_l\}_{l=1}^L) \prod_{l=1}^L p_{\gamma_l}(\gamma_l; \tilde{\gamma}_l, i_l)}_{L\text{-fold}} d\gamma_1 d\gamma_2 \cdots d\gamma_L, \quad (7.49)$$

133
where \(i_l \) represents the fading parameter(s) associated with the \(l \)th channel. Note that if the traditional integral representation of the Gaussian Q-function (7.30) were to be used in the \(P_b \left(E \left(\gamma \right) \right) \) term, (7.49) would result in a \(L + 1 \)-fold integral with infinite limits (one of these integrals comes from the classical definition of the Gaussian Q-function (7.30) in \(P_b \left(E \left(\gamma \right) \right) \)), and a closed-form solution or an adequately efficient numerical integration method would not be available. Using the alternate product form representation of the conditional BER (7.32) in (7.49) yields

\[
P_b(E) = \frac{1}{\pi} \int_0^{\pi/2} \prod_{l=1}^{L} \mathcal{M}_i \left(-\frac{g}{\sin^2 \phi} \gamma_l \right) d\phi.
\]

(7.51)

The integrand in (7.50) is absolutely integrable and hence the order of integration can be interchanged. Thus grouping terms of index \(l \) we obtain

\[
P_b(E) = \frac{1}{\pi} \int_0^{\pi/2} \prod_{l=1}^{L} \mathcal{M}_i \left(-\frac{g}{\sin^2 \phi} \gamma_l \right) d\phi,
\]

(7.52)

Hence in all cases this approach reduces the \(L + 1 \)-fold integral with infinite limits of (7.49) (accounting for the infinite range integral coming from the traditional representation of the Gaussian Q-function) to a single finite-range integral (7.51) whose integrand contains only elementary functions such as exponentials and trigonometrics, and which can therefore be easily evaluated numerically.

It is interesting to mention at this point that the same final result (7.51) can be obtained, without using the alternate representation of the Gaussian Q-function, but by starting with the characteristic functions of \(\gamma_l \) [27, Eqn. (17)]. Indeed it can be shown that that the error probability expressed in terms of the characteristic function of \(\gamma_l \) (using our notation) can be rewritten in terms of the MGF of \(\gamma_l \) by changing the integration contour. The details of the procedure are described in [29]. Following that procedure and using the fact that the MGF of the sum of independent RVs is the product of the MGF of the individual RVs, The \(P_b \) in [27, Eqn. (17)] can be rewritten as (using again our notation)

\[
P_b(E) = \frac{1}{2\pi} \int_1^{\infty} \prod_{l=1}^{L} \mathcal{M}_i \left(-\frac{gy_l}{y-1} \right) dy,
\]

(7.53)

which can be changed to the same single finite-range integral (7.51) by adopting the change of variables \(y = \frac{1}{\sin^2 \phi} \) [28].

\(^2\text{Recall that the approach presented here applies to independent diversity channels. Although some of the “features” of this approach also apply to correlated diversity channels [26], independent fading paths for microdiversity systems (antenna arrays) is unlikely in the presence of large-scale fading effects such as shadowing. In this case the analysis presented in this paper would be limited to macro-diversity systems.}\)
7.7.6 Average Symbol Error Rate of M-PSK Signals

Product Form Representation of the Conditional SER

The conditional SER for M-PSK, $P_s(E|\{\gamma_l\}_{l=1}^L)$, does not exist in closed-form. However, it can be shown that it is given exactly by the desirable integral expression [21, 19, 18]:

\[
P_s(E|\{\gamma_l\}_{l=1}^L) = \frac{1}{\pi} \int_0^{(M-1)\pi/M} \exp\left(-\frac{g_{psk} \gamma_l}{\sin^2 \phi}\right) d\phi = \frac{1}{\pi} \int_0^{(M-1)\pi/M} \prod_{l=1}^L \exp\left(-\frac{g_{psk} \gamma_l}{\sin^2 \phi}\right) d\phi,
\]

where $g_{psk} = \sin^2\left(\frac{\pi}{M}\right)$.

Average SER of M-PSK

Following the same steps as in (7.49)-(7.51), it can be easily shown that the average SER of M-PSK, $P_s(E)$, over generalized fading channels is given by

\[
P_s(E) = \frac{1}{\pi} \int_0^{(M-1)\pi/M} \prod_{l=1}^L \mathcal{M}_l \left(-\frac{g_{psk} \gamma_l}{\sin^2 \phi}, \gamma_l\right) d\phi,
\]

(7.55)

This result (7.55) generalizes the M-PSK average SER results of [31, Eqn. (22)] and [32, Eqn. (21)] for L independent identically distributed Rayleigh paths. It also gives an alternative approach for the performance evaluation of coherent M-PSK over frequency-selective channels characterized by a Rician dominant path with Rayleigh secondary paths [33, 34]. Furthermore, by setting L to 1, the result (7.55) can be used to evaluate the average SER performance of M-PSK with single channel reception. This leads, for example, to the following results:

- Rayleigh: Substituting (7.37) in (7.55) (with $L = 1$), then using [23, p. 185, Eqn. (2.562.1)] yields a closed-form expression [35, Eqn. (9)], [36, Eqn. (7)] for the SER of M-PSK over a Rayleigh channel which agrees with the results obtained using various other methods [31, Eqn. (22)] and [37, Eqn. (36)].

- Nakagami-n (Rice): Substituting (7.42) in (7.55), leads to an expression for the SER of M-PSK over a Nakagami-n (Rice) channel which is easily shown to agree with [37, Eqn. (35)].

- Nakagami-m Substituting (7.44) in (7.55) (with $L = 1$) gives the SER of M-PSK over a Nakagami-m channel as

\[
P_s(E) = \frac{1}{\pi} \int_0^{(M-1)\pi/M} \left(1 + \frac{\gamma l \sin^2\left(\frac{\pi}{M}\right)}{m \sin^2 \phi}\right)^{-m} d\phi.
\]

(7.56)

Note that (7.56) yields the same numerical values as [38, Eqn. (17)] and [39, Eqn. (9)] and it is much easier to compute for any arbitrary value of m.

7.7.7 Average Symbol Error Rate of Square M-QAM Signals

Product Form Representation of the Conditional SER

Consider square M-QAM signals whose constellation size is given by $M = 2^k$ where k is an even number. The conditional SER for square M-QAM is given by [18, Eqn. (10.32)]

\[
P_s(E|\{\gamma_l\}_{l=1}^L) = 4 \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{2} g_{qam} \gamma_l\right) - 4 \left(1 - \frac{1}{\sqrt{M}}\right)^2 Q^2\left(\sqrt{2} g_{qam} \gamma_l\right),
\]

(7.57)
where \(g_{\text{qam}} = \frac{3}{2(M-1)} \). Simon and Divsalar [40] generalized the alternate representation of the Gaussian Q-function to the two-dimensional case and showed in particular that [40, Eqn. (80)]

\[
Q^2(x) = \frac{1}{\pi} \int_0^{\pi/4} \exp \left(-\frac{x^2}{2 \sin^2 \phi} \right) d\phi; \quad x \geq 0.
\] (7.58)

A simple proof of this result is given in Appendix A-2. Using the alternate representation of the Gaussian-Q function (7.31) as well as the new representation of the square of the Gaussian-Q function (7.58), the conditional SER (7.57) may be rewritten in the more desirable product form given by

\[
P_s \left(E_{\text{tol}} \right) = \frac{4}{\pi} \left(1 - \frac{1}{\sqrt{M}} \right) \int_0^{\pi/2} \exp \left(-\frac{g_{\text{qam}} \gamma t}{\sin^2 \phi} \right) d\phi - \frac{4}{\pi} \left(1 - \frac{1}{\sqrt{M}} \right)^2 \int_0^{\pi/4} \exp \left(-\frac{g_{\text{qam}} \gamma t}{\sin^2 \phi} \right) d\phi
\]

\[
= \frac{4}{\pi} \left(1 - \frac{1}{\sqrt{M}} \right) \int_0^{\pi/2} \prod_{t=1}^{L} \exp \left(-\frac{g_{\text{qam}} \gamma t}{\sin^2 \phi} \right) d\phi - \frac{4}{\pi} \left(1 - \frac{1}{\sqrt{M}} \right)^2 \int_0^{\pi/4} \prod_{t=1}^{L} \exp \left(-\frac{g_{\text{qam}} \gamma t}{\sin^2 \phi} \right) d\phi.
\] (7.59)

Average SER of M-QAM

Following the same steps as in (7.49)-(7.51) yields the average SER of M-QAM over generalized fading channels as

\[
P_s(E) = \frac{4}{\pi} \left(1 - \frac{1}{\sqrt{M}} \right) \prod_{t=1}^{L} \mathcal{M}_t \left(\frac{g_{\text{qam}} \gamma t}{\sin^2 \phi} ; \frac{\gamma t}{\gamma} \right) d\phi
\]

\[
- \frac{4}{\pi} \left(1 - \frac{1}{\sqrt{M}} \right)^2 \prod_{t=1}^{L} \mathcal{M}_t \left(\frac{g_{\text{qam}} \gamma t}{\sin^2 \phi} ; \frac{\gamma t}{\gamma} \right) d\phi.
\] (7.60)

Of particular interest is the average SER performance of M-QAM with single channel reception, which can be obtained by setting \(L \) to 1 in (7.59). For example, substituting (7.37) in (7.59) (with \(L = 1 \)), then using again [23, p. 185, Eqn. (2.562.1)] yields a closed-form expression for the average SER of M-QAM over Rayleigh channels as

\[
P_s(E) = 2 \left(1 - \frac{1}{\sqrt{M}} \right) \left(\sqrt{\frac{g_{\text{qam}} \gamma}{1 + g_{\text{qam}} \gamma}} \right)
\]

\[
+ \left(1 - \frac{1}{\sqrt{M}} \right)^2 \frac{4}{\pi} \sqrt{\frac{g_{\text{qam}} \gamma}{1 + g_{\text{qam}} \gamma}} \arctan \left(\sqrt{\frac{1 + g_{\text{qam}} \gamma}{g_{\text{qam}} \gamma}} - 1 \right).
\] (7.60)

Note that (7.60) matches the result obtained by [37, Eqn. (44)] for the particular case where \(M = 16 \). Note also that (7.60) can in fact be obtained alternatively by averaging (7.57) over the Rayleigh PDF (7.16) and by using a standard known integral involving the function \(\text{erfc}^2(\cdot) \) [23, p. 941, Eqn. (8.258.2)]. In addition using [41, Eqns. (5A.4b) and (5A.21)] in (7.59) we obtain the performance of M-QAM over \(L \) i.i.d. Rayleigh fading channels as

\[
P_s(E) = 4 \left(1 - \frac{1}{\sqrt{M}} \right) \left(\frac{1 - \mu_c}{2} \right) \sum_{l=0}^{L-1} \binom{L - 1 + l}{l} \left(\frac{1 + \mu_c}{2} \right)^L - 4 \left(1 - \frac{1}{\sqrt{M}} \right)^2
\]

\[
\times \left(\frac{1 - \mu_c}{\pi} \left[\frac{\pi}{2} - \arctan \mu_c \sum_{l=0}^{L-1} \frac{(2l)!}{4^l (1 + g_{\text{qam}} \gamma)^l} \sin \left(\arctan \mu_c \right) \sum_{l=1}^{L-1} \frac{T_l}{(1 + g_{\text{qam}} \gamma)^l} \right] \cos \left(\arctan \mu_c \right)^{2(l+1)} \right),
\] (7.61)

136
where

\[\mu_c = \sqrt{\frac{g_{\text{qam}} \gamma}{1 + g_{\text{qam}} \gamma}}, \quad (7.62) \]

and

\[T_d = \frac{\binom{2l}{l}}{(2l-1)!} A^l \left(\frac{2l}{2l-1} \right), \quad (7.63) \]

Note that equation (7.61) is equivalent to the expression [42, Eqn. (15)] and to the expression [43, Eqn. (12)] which involves a sum of Gaussian hypergeometric functions. Furthermore, using a partial fraction expansion on the integrand of (7.59), we obtain with the help of [23, p. 185, Eqn. (2.562.1)] the average SER of M-QAM over L Rayleigh fading channels with distinct average fading powers and with MRC reception as

\[
P_s(E) = 2 \left(1 - \frac{1}{\sqrt{M}} \right) \sum_{l=1}^{L} \rho_l \left(1 - \sqrt{\frac{g_{\text{qam}} \gamma_l}{1 + g_{\text{qam}} \gamma_l}} \right) + \left(1 - \frac{1}{\sqrt{M}} \right)^{-2} \left[\frac{\psi}{\pi} \sum_{l=1}^{L} \sqrt{\frac{g_{\text{qam}} \gamma_l}{1 + g_{\text{qam}} \gamma_l}} \arctan\left(\sqrt{\frac{1 + g_{\text{qam}} \gamma_l}{g_{\text{qam}} \gamma_l}} \right) - \sum_{l=1}^{L} \rho_l \right],
\]

where

\[
\rho_l = \left(\prod_{k=1}^{L} \left(1 - \frac{\gamma_k}{\gamma_l} \right) \right)^{-1}, \quad (7.64)
\]

which is equivalent to the expression [42, Eqn. (10)] and to the expression [43, Eqn. (21)].

7.7.8 Noncoherent and Differentially Coherent Modulation

A similar unified approach to determining the BER of noncoherent and differentially coherent modulations with single and multichannel reception over generalized fading channels is presented in [44]. This approach differs from that of the coherent modulation case in that it relies on an alternate form of the Marcum Q-function instead of the Gaussian Q-function, since the BER of noncoherent and differentially coherent modulations in AWGN are given in terms of the Marcum Q-function. Otherwise the approach is essentially the same as in the coherent case, and leads to BER expressions involving a single finite-range integral that can be readily evaluated numerically. More details on this approach can be found in [44] and [41].

7.8 Transmitter Diversity

In transmit diversity there are multiple antennas available at the transmitter, and the transmitted signal \(s(t) \) is sent over the \(i \)th antenna with a branch weight \(\alpha_i \). The path gain associated with the \(i \)th antenna is \(r_i e^{j\theta_i} \), and the signals transmitted over all antennas are added “in the air”, which leads to a received signal given by

\[
r(t) = \sum_{i=1}^{M} \alpha_i r_i e^{j\theta_i} s(t). \quad (7.65)
\]

\[\text{[43, Eqn. (12)] gives the same numerical result as the one given by (7.61) if a minor typo is corrected in [43, Eqn. (18)] (the denominator should be \((2k+1)/\sqrt{\pi}\) rather than \((2k-1)/\sqrt{\pi}\)).} \]
This system works the same as with receiver diversity assuming that the channel gains are known at
the transmitter, and the analysis is then also identical. Thus, transmitter diversity provides the same
diversity gains as receiver diversity. The complication of transmit diversity is to obtain the coherent
channel gain and phase at the transmitter. These channel values are typically measured at the receiver
using a pilot technique and then fed back to the transmitter. The advantage of transmit diversity over
receiver diversity is that in some systems, like the downlink of a cellular system, the receiver may not be
large enough for multiple antennas but the transmitter may be able to accommodate them.

Appendix A
Derivations of the Alternate Representations of the Gaussian Q-function
and its Square

A byproduct of Craig’s work on the probability of error for two-dimensional signal constellations [19] was
the alternate representation of the Gaussian Q-function given in (7.31). An extension of this represen-
tation for the square of the Gaussian Q-function (7.58) was obtained by Simon and Divsalar [40]. In
this appendix we present another simple method of proving the alternate representations of the Gaussian
Q-function and its square.

A-1 Proof of Eqn. (7.31)

The proposed proof is an extension of the classical method to evaluate the Laplace-Gauss integral [23,
Eqn. (3.321.3)]:

$$J(a) \overset{\triangle}{=} \int_0^{\infty} e^{-a^2 x^2} \, dx = \frac{\sqrt{\pi}}{2a}; \quad a > 0. \quad (7.66)$$

Let us consider the double integral

$$\int_0^{\infty} \int_x^{\infty} e^{-\frac{u^2+v^2}{2}} \, du \, dv; \quad x \geq 0. \quad (7.67)$$

Because of separability (10.7) can be rewritten as

$$\left\{ \int_0^{\infty} e^{-u^2/2} \, du \right\} \left\{ \int_x^{\infty} e^{-v^2/2} \, dv \right\} = \pi Q(x), \quad (7.68)$$

where we see that each integral in the LHS of (10.8) is a well-defined function. Further, transformation
to polar coordinates $u = r \cos \phi$ and $v = r \sin \phi$ ($du \, dv = rdr \, d\phi$) may be carried out in (10.7) giving

$$\int_0^{\infty} \int_x^{\infty} e^{-\frac{u^2+v^2}{2}} \, du \, dv = \int_0^{\pi/2} \int_{x\sin \phi}^{\infty} e^{-r^2/2} \, rdr \, d\phi$$

$$= \int_0^{\pi/2} \exp \left(-\frac{x^2}{2 \sin^2 \phi} \right) d\phi. \quad (7.69)$$

Equating the RHS of (10.8) and (10.9) we obtain an alternate proof of the desired result (7.31). Note
that another purely algebraic proof of the result (7.31) which can be implied from the work of Pawula et
al. [21] is given in detail in [41, Appendix 4A].
A-2 Proof of Eqn. (7.58)

The proof presented in Appendix A-1 can be easily extended to arrive at the alternate representation of $Q^2(\cdot)$ given in (7.58). Let us now consider the following double integral

$$
\int_x^\infty \int_x^\infty e^{-u^2+\frac{v^2}{2}} \, du \, dv; \quad x \geq 0.
$$

(7.70)

Again because of separability, (10.10) can be rewritten as

$$
\int_x^\infty e^{-u^2/2} \, du \int_x^\infty e^{-v^2/2} \, dv = 2 \pi Q^2(x),
$$

(7.71)

where each integral in the LHS of (10.11) is the Gaussian Q-function multiplied by $\sqrt{2\pi}$. The transformation to polar coordinates $u = r \cos \phi$ and $v = r \sin \phi$ ($du \, dv = rdr \, d\phi$) is carried out in (10.10) and by symmetry the rectangular region of integration is divided into two equal triangular parts giving

$$
\int_x^\infty \int_x^\infty e^{-u^2+\frac{v^2}{2}} \, du \, dv = 2 \int_0^{\pi/4} \int_{x \sin \phi}^{\infty} e^{-r^2/2} r \, dr \, d\phi
$$

$$
= 2 \int_0^{\pi/4} \exp \left(-\frac{x^2}{2 \sin^2 \phi} \right) d\phi.
$$

(7.72)

Equating (10.11) and (10.12) we obtain an alternate proof of the Simon-Divsalar result (7.58).

Appendix B

Closed-Form Expressions for $\int_0^{\pi/2} \left(\frac{\sin^2 \phi}{\sin^2 \phi + c} \right)^m d\phi$

The alternate representation of the Gaussian Q-function can also be used to find closed-form expressions for integrals not tabulated in classical table of integrals such as [22, 23]. As an example we evaluate in this appendix the integral $I_m(c)$ defined by

$$
I_m(c) \triangleq \int_0^{\pi/2} \left(\frac{\sin^2 \phi}{\sin^2 \phi + c} \right)^m d\phi.
$$

(7.73)

To do so consider first the integral $J_m(a, b)$ defined by

$$
J_m(a, b) \triangleq \frac{a^m}{\Gamma(m)} \int_0^{+\infty} e^{-at} t^{m-1} Q(\sqrt{b}t) \, dt, \quad m \geq 0.
$$

(7.74)

This integral (10.14) has a known closed-form expression. When m is a positive real number the integral $J_m(a, b)$ is given by [54, Eqn. (A8)]

$$
J_m(a, b) \triangleq J_m(c) = \frac{\sqrt{c/\pi}}{2(1+c)^{m+1/2}} \frac{\Gamma(m+1/2)}{\Gamma(m+1)} \Gamma(\theta) \, F_1\left(1, m + 1/2; m + 1; \frac{1}{1 + c}\right),
$$

(7.75)

where $c = b/(2a)$ and $F_1(\cdot, \cdot; \cdot)$ denotes the the hypergeometric series (known also as the Gauss hypergeometric function). When m is a positive integer, the integral $J_m(a, b)$ reduces to [24, Eqn. (7.4.15)], [54, Eqn. (A13)]

$$
J_m(a, b) \triangleq J_m(c) = [P(c)]^m \sum_{k=0}^{m-1} \binom{m - 1 + k}{k} [1 - P(c)]^k,
$$

(7.76)
where
\[P(x) = \frac{1}{2} \left(1 - \sqrt{\frac{x}{1 + x}} \right); \quad x \geq 0. \]
(7.77)

Using the alternate representation of the Gaussian Q-function (7.31) in (10.15), we obtain
\[J_m(a, b) = \frac{a^m}{\Gamma(m)} \int_0^\infty e^{-at} t^{m-1} \left(\frac{1}{\pi} \int_0^{\pi/2} \exp \left(-\frac{b t}{2 \sin^2 \phi} \right) d\phi \right) dt. \]
(7.78)

Interchanging the order of integration in (10.18), then using (7.43), gives
\[J_m(a, b) \triangleq J_m(c) = \frac{1}{\pi} \int_0^{\pi/2} \left(\frac{\sin^2 \phi}{\sin^2 \phi + c} \right)^m d\phi = \frac{1}{\pi} I_m(c), \]
(7.79)

which is the desired closed-form expression for \(I_m(c) \). A similar equivalence can be made between a result derived by Chennakeshu and Anderson [32] and the integrals \(\int_0^{(M-1)} \pi/M \left(\frac{\sin^2 \phi}{\sin^2 \phi + c} \right)^m d\phi \) and \(\int_0^{\pi/M} \left(\frac{\sin^2 \phi}{\sin^2 \phi + c} \right)^m d\phi \). Full details on these equivalences can be found in [41, Appendix 5A]. The reason for mentioning these equivalences and the resulting closed-form expressions is that they can be used, for example, to simplify calculations involving the performance BPSK and \(M \)-PSK with selection diversity over correlated Nakagami-\(m \) fading channels [25].

Appendix C

Key Result on Multiple Antenna System Capacity

While the idea of using multiple antennas at either the transmitter or the receiver to achieve diversity gains or directional transmission has been around for a long time, the recent surge of interest in dual-antenna-array systems (systems using multiple antennas at both the transmitter and receiver) is mostly due to the following result by Foschini and Gans. They show that with \(n \) transmit and \(n \) receive antennas and i.i.d. fades at different antenna elements, if the receiver has a perfect estimate of the channel the mutual information grows linearly with \(n \) for a given fixed average transmitter power and bandwidth. We provide some insight into the mathematical basis of this result.

Since the transmitter does not know the channel, we assume that equal power is transmitted from each transmit antenna. The mutual information of the \(n \)-transmit, \(n \)-receive antenna system with equal power allocation is:
\[I_n = \log \det[I_{n \times n} + \frac{P}{n} H H^\dagger], \]
where the total transmit power is \(P \). If we denote the eigenvalues of \(H H^\dagger \) as \(\lambda_i, 1 \leq i \leq n \) we can express this as:
\[I_n = \sum_{i=1}^n \log(1 + \frac{P}{n} \lambda_i). \]

Now comes the really interesting result from theory of large random matrices that says that the eigenvalues of the random matrix \(H H^\dagger \) grow linearly in \(n \), asymptotically as \(n \to \infty \). This is true for any distribution of the entries \(H_{ij} \), as long as the entries are i.i.d. with unit variance. Even more interestingly if \(\lambda_{max} \) is the largest eigenvalue of \(H H^\dagger \), then the following statements are true with probability one,
\[\lim_{n \to \infty} \frac{\lambda_{max}}{n} = 4, \]
140
and the random empirical distribution of the scaled eigenvalues \(\left\{ \frac{\lambda_i}{n} \right\} \) converges to the following deterministic density:

\[
g(\lambda) = \frac{1}{\pi} \sqrt{\frac{\lambda}{\lambda - \frac{1}{4}}} \quad \text{for} \quad 0 \leq \lambda \leq 4 \quad \text{and} \quad 0 \quad \text{otherwise.}
\]

The asymptotic behavior of the mutual information \(I_n \) follows directly from this result:

\[
\frac{I_n}{n} = \frac{1}{n} \sum_{i=1}^{n} \log(1 + P \frac{\lambda_i}{n}) \to \int_{0}^{4} \log(1 + P\lambda) g(\lambda) d\lambda.
\]

Thus the mutual information scales linearly with \(n \). Beyond its theoretical beauty this result is exciting since the linear growth predicted by the asymptotic analysis is observed even for reasonably small number of antennas. Also it was shown recently that even for correlated fades between antenna elements the capacity growth rate is still linear in \(n \), albeit smaller than under independent fading.

Recent work in [46, 47, 48] indicates that substantial capacity improvements can be made on MIMO systems even with just channel correlation information available at the transmitter (this is not true for SISO systems). Moreover, results in [48] indicate that in some scenarios a beamforming transmission strategy achieves close to channel capacity. This is interesting since beamforming corresponds to scalar coding with linear preprocessing at the transmit antenna array. Thus, the complexity involved is only a fraction of the vector coding complexity for typical array sizes. These results are quite new and have not yet been translated to practical transmission strategies for MIMO systems. However, these results suggest that the capacity enhancement promised by MIMO systems can be achieved in real systems with techniques of reasonable complexity. Practical transmission strategies for MIMO channels generally fall into two categories: space-time coding and space-time signal processing. In space-time coding the codes are designed to take advantage of the extra degrees of freedom in the space domain [49, 50]. Space-time processing focuses on estimation, equalization, and filtering techniques to accurately estimate a signal transmitted over a MIMO channel [51, 52].

141
Bibliography

Chapter 8

Coding for Wireless Channels

Error correction codes provide the capability for bit errors introduced by transmission of a modulated signal through a wireless channel to be either detected or corrected by a decoder in the receiver. In this chapter we describe codes designed for errors introduced by AWGN channels and by fading channels. Fading channel codes are either designed specifically for fading channels or are based on using AWGN channel codes combined with interleaving. The basic idea behind coding and interleaving is to randomize the location of errors that occur in bursts, since most codes designed for AWGN channels do not work well when there is a long sequence of errors. Thus, the interleaver disperses the location of errors occurring in bursts such that just a few simultaneous errors occur, which can typically be corrected by most AWGN codes.

In this chapter we will first discuss the basic design parameters in coding, including coding gain, rate penalty, and bandwidth expansion. The remainder of the chapter is focused on specific codes. We first consider block and convolutional codes. These coding methods have been around for many decades, but often require increased bandwidth or reduced data rate in exchange for their error correction capabilities. We will also discuss the use of block or convolutional codes in conjunction with a block or convolutional interleaver for use in fading channels. The next class of codes we will discuss are trellis codes, invented in the late 1970s as a technique to obtain error correction without rate or bandwidth penalty through a joint design of the modulation and coding. We will discuss the basic design principle behind trellis codes for both AWGN and fading channels. We next discuss the recently developed coding techniques of turbo codes and low density parity check codes. These extremely powerful codes exhibit near-capacity performance with reasonable complexity levels, and are being implemented in current wireless standards. We conclude the chapter with a discussion of unequal error protection codes.

8.1 Code Design Considerations

The main reason to apply error correction coding in a wireless system is to reduce the probability of bit error \(P_b \). The amount of \(P_b \) reduction is typically characterized by the coding gain of a code. Coding gain for a given code is defined as the amount that the SNR can be reduced under the coding technique for a given \(P_b \). Coding gain is illustrated in Figure 8.1. We see in this figure that the gain \(C_{g1} \) at \(P_b = 10^{-4} \) is less than the gain \(C_{g2} \) at \(P_b = 10^{-6} \), and there is negligible coding gain at \(P_b = 10^{-2} \). In fact some codes have negative coding gain at low SNRs, since the extra redundancy required in the code does not provide sufficient performance gain at these SNRs to yield a positive coding gain. Obviously, a system designer tries to avoid using a code with negative coding gain at a given SNR at that SNR, but this might not be possible when the channel SNR is unknown or time-varying.
For many codes, the error correction capability of a code does not come for free. This performance enhancement is paid for by increased complexity and, for block codes, convolutional codes, turbo codes, and LDPC codes, by either a decreased data rate or increase in signal bandwidth. Specifically, if the data rate through the channel is fixed at R_b, then the information rate for a code that uses n coded bits for every k uncoded bits is $\frac{k}{n}R_b$, i.e. coding decreases the data rate by the fraction k/n. However, we can keep the information rate constant and introduce coding gain by decreasing the bit time by K/n. This typically results in an expanded bandwidth of the transmitted signal by n/k. Coded modulation uses a joint design of the code and modulation to obtain coding gain without any bandwidth expansion. These issues will be discussed in more detail below.

8.2 Linear Block Codes

Linear block codes are conceptually simple codes that are basically an extension of 1-bit parity check codes for error detection. These 1-bit parity check codes are one of the most common forms of detecting transmission errors. The code uses 1 extra bit in a block of n data bits to indicate whether the number of 1s in a block is odd or even. Thus, if a single error occurs, either the parity bit is corrupted or the
number of detected 1 bits changes: in either case the parity bit will not correspond to the number of detected 1s in the block, so the single error is detected. Linear block codes extend this notion by using a larger number of parity bits to either detect more than one error or correct for one or more errors. Unfortunately linear block codes, along with convolutional codes, trade their error detection or correction capability for either bandwidth expansion or a lower data rate, as will be discussed in more detail below. We will restrict our attention to binary codes, where both the original information and the corresponding code consist of bits taking a value of either 0 or 1.

8.2.1 Binary Linear Block Codes

A binary block code generates a block of n coded bits (symbols) from k information bits. Both the coded bits and the information bits take on values of 0 or 1. We call this an (n,k) binary block code. The n coded bits can take on 2^n possible values corresponding to all possible combinations of the n binary bits. We select 2^k codewords from these 2^n possibilities to form the code, such that each k bit information block is uniquely mapped to one of these 2^k codewords. The rate of the code is \(R_c = k/n \) bits/symbol. If we assume that symbols are transmitted across the channel at a symbol rate R_s symbols/second, then the information rate associated with an (n,k) block code is \(R_i = R_c R_s = k R_s / n \) bits/second. Thus we see that block coding reduces the data rate compared to what we obtain with uncoded modulation by the code rate R_c.

A block code is called a linear code when the mapping of the k information bits to the n coded bits is a linear mapping. In order to describe this mapping and the corresponding encoding and decoding functions in more detail, we must first discuss properties of the vector space of binary n-tuples and its corresponding subspaces. The set of all binary n-tuples B_n is a vector space over the binary field, which consists of the two elements 0 and 1. All fields have two operations, addition and multiplication: for the binary field these operations correspond to binary addition (modulo 2 addition) and standard multiplication. A subset S of B_n is called a subspace if it satisfies the following conditions:

1. The all-zero vector is in S.
2. The set S is closed under addition, such that if $S_i \in S$ and $S_j \in S$, then $S_i + S_j \in S$.

An (n,k) block code is linear if the 2^k length-n codewords of the code form a subspace of B_n. Thus, if C_i and C_j are two codewords in an (n,k) linear block code, then $C_i + C_j$ must form another codeword of the code.

Example 8.1: The vector space B_3 consists of all binary tuples of length 3:

$$B_3 = \{000,001,010,011,100,101,110,111\}.$$

Note that B_3 is a subspace of itself, since it contains the all zero vector and is closed under addition. Determine which of the following subsets of B_3 form a subspace:

- $S_1 = \{000, 001, 100, 101\}$
- $S_2 = \{000, 100, 110, 111\}$
- $S_3 = \{001, 100, 101\}$

Solution: It is easily verified that S_1 is a subspace, since it contains the all-zero vector and the sum of any two tuples in S_1 is also in S_1. S_2 is not a subspace since it is not closed under addition, as
110 + 111 = 001 \not\in S_2. S_3 is not a subspace since, although it is closed under addition, it does not contain the all zero vector.

Intuitively, the greater the distance between codewords in a given code, the less chance that errors introduced by the channel will cause a transmitted codeword to be decoded as a different codeword. We define the Hamming distance between two codewords (or sequences) \(C_i\) and \(C_j\), denoted as \(d(C_i, C_j)\) or \(d_{ij}\), as the number of elements in which they differ:

\[
d_{ij} = \sum_{l=1}^{n} C_{i,l} + C_{j,l},
\]

(8.1)

where \(C_{m,l}\) denotes the \(l\)th bit in \(C_{m,l}\). For example, if \(C_i = [00101]\) and \(C_j = [10011]\) then \(d_{ij} = 3\). We define the weight of a given codeword \(C_i\) as the number of 1s in the codeword, so \(C_i = [00101]\) has weight 2. The weight of a given codeword \(C_i\) is just its Hamming distance \(d_{0i}\) with the all zero codeword \(C_0 = [00 \ldots 0]\) or, equivalently, the sum of its elements:

\[
w(C_i) = \sum_{l=1}^{n} C_{i,l}.
\]

(8.2)

Since \(0 \oplus 0 = 1 \oplus 1 = 0\), the Hamming distance between \(C_i\) and \(C_j\) is equal to the weight of \(C_i \oplus C_j\). Since the Hamming distance between any two codewords equals the weight of their sum, we can determine the minimum distance between all codewords in a code by just looking at the minimum distance between all codewords and the all zero codeword. Thus, we define the minimum distance of a code as

\[
d_{\text{min}} = \min_{i, i \neq 0} d_{0i}.
\]

(8.3)

We will see below that the minimum distance of a code is a critical metric for its error detection and correction capability.

8.2.2 Generator Matrix

The generator matrix is a compact description of how codewords are generated from information bits in a linear block code. The design goal in linear block codes is to find generator matrices that yield codes that are easy to encode and decode yet have powerful error correction/detection capabilities. Consider an \((n, k)\) code with \(k\) information bits denoted as

\[
U_i = [u_{i1}, \ldots, u_{ik}]
\]

that are encoded into the codeword

\[
C_i = [c_{i1}, \ldots, c_{in}].
\]

We represent the encoding operation as a set of \(n\) equations defined by

\[
c_{ij} = u_{i1}g_{1j} + u_{i2}g_{2j} + \ldots + u_{ik}g_{kj}, \quad j = 1, \ldots, n,
\]

(8.4)

where \(g\) is binary (0 or 1) and binary (standard) multiplication is used. We can write these \(n\) equations in matrix form as

\[
C_i = U_i G,
\]

(8.5)
where the $k \times n$ generator matrix G for the code is defined as

$$
G = \begin{bmatrix}
 g_{11} & g_{12} & \cdots & g_{1n} \\
 g_{21} & g_{22} & \cdots & g_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 g_{k1} & g_{k2} & \cdots & g_{kn}
\end{bmatrix}.
$$

(8.6)

If we denote the lth row of G as $g_l = [g_{l1}, \ldots, g_{ln}]$ then we can write any codeword C_i as linear combinations of these row vectors as follows:

$$
C_i = x_{i1} g_1 + x_{i2} g_2 + \cdots + x_{ik} g_k.
$$

(8.7)

Since a linear (n, k) block code is a subspace of dimension k, the k row vectors $\{g_l\}_{l=1}^k$ of G must be linearly independent, so that they span the k-dimensional subspace associated with the 2^k codewords. Hence, G has rank k. Since the set of basis vectors for this subspace is not unique, the generator matrix is also not unique.

A **systematic** linear block code is described by a generator matrix of the form

$$
G = [I_k | P] = \begin{bmatrix}
 1 & 0 & \cdots & 0 & p_{11} & p_{12} & \cdots & p_{1n} \\
 0 & 1 & \cdots & 0 & p_{21} & p_{22} & \cdots & p_{2n} \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 1 & p_{k1} & p_{k2} & \cdots & p_{kn}
\end{bmatrix},
$$

(8.8)

where I_k is a $k \times k$ identity matrix and P is a $k \times (n - k)$ matrix that determines the redundant, or parity, bits to be used for error correction or detection. The codeword output from a systematic encoder is of the form

$$
C_i = U_i G = U_i[I_k | P] = [u_{i1}, \ldots, u_{ik}, p_1, \ldots, p_{n-k}]
$$

(8.9)

where the first k bits of the codeword are the original information bits and the last $(n - k)$ bits of the codeword are the parity bits obtained from the information bits as

$$
p_j = u_{i1} p_{1j} + \cdots + u_{ik} p_{kj}, \quad j = 1, \ldots, n - k.
$$

Note that any generator matrix for an (n, k) linear block code can be reduced by row operations and column operations to a generator matrix with the systematic form.

Example 8.2: Systematic linear block codes are typically implemented with linear shift registers, with $n - k$ modulo-2 adders tied to the appropriate stages of the shift register. The resulting parity bits are appended to the end of the information bits to form the codeword. Find the linear shift register for generating a $(7,4)$ binary code corresponding to the generator matrix

$$
G = \begin{bmatrix}
 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 1 & 0 & 1 & 0
\end{bmatrix}.
$$

(8.10)

Solution: The shift register implementation is shown in the following figure.
8.2.3 Parity Check Matrix and Syndrome Testing

The parity check matrix is used to decode linear block codes with generator matrix G. The parity check matrix H corresponding to a generator matrix $G = [I_k | P]$ is defined as

$$H = [I_{n-k} | P^T].$$ \hspace{1cm} (8.11)

It is easily verified that $GH^T = 0_{k,n-k}$, where $0_{k,n-k}$ denotes an all zero $k \times (n-k)$ matrix. Recall that a given codeword C_i in the code is obtained by multiplication of the information bit sequence U_i by the generator matrix G: $C_i = U_iG$. Thus,

$$C_iH^T = U_iGHT = 0_{n-k}$$ \hspace{1cm} (8.12)

for any input sequence U_i, where 0_{n-k} denotes the all-zero row vector of length $n-k$. Thus, multiplication of any valid codeword with the parity check matrix results in an all zero vector. This property is used to determine whether the received vector is a valid codeword or has been corrupted, based on the notion of syndrome testing, which we now describe.

Let R be the received codeword resulting from transmission of codeword C. In the absence of channel errors, $R = C$. However, if the transmission is corrupted, one or more of the coded bits in R will differ from those in C. We therefore write the received codeword as

$$R = C + e,$$ \hspace{1cm} (8.13)

where $e = [e_1 e_2 \ldots e_n]$ is the error vector indicating which coded bits were corrupted by the channel. We define the syndrome of R as

$$S = RHT. \hspace{1cm} (8.14)$$

If R is a valid codeword, i.e. $R = C_i$ for some i, then $S = C_iH^T = 0_{n-k}$ by (8.12). Thus, the syndrome equals the all zero vector if the transmitted codeword is not corrupted, or is corrupted in a manner such that the received codeword is a valid codeword in the code that is different from the transmitted codeword. If the received codeword R contains detectable errors, then $S \neq 0_{n-k}$. If the received codeword contains correctable errors, then the syndrome identifies the error pattern corrupting the transmitted codeword, and these errors can then be corrected. Note that the syndrome is a function only of the error pattern e and not the transmitted codeword C, since

$$S = RHT = (C + e)HT = CH^T + eHT = 0_{n-k} + eHT.$$ \hspace{1cm} (8.15)

Since $S = eHT$ corresponds to $n-k$ equations in n unknowns, there are 2^k possible error patterns that can produce a given syndrome S. However, the most likely error pattern is the one with minimal weight,
corresponding to the least number of errors introduced in the channel. Thus, if an error pattern \(\hat{e} \) is the most likely error associated with a given syndrome \(S \), the transmitted codeword is typically decoded as

\[
\hat{C} = R + \hat{e} = C + e + \hat{e}.
\]

(8.16)

When the most likely error pattern does occur, i.e. \(\hat{e} = e \), then \(\hat{C} = C \), i.e. the corrupted codeword is correctly decoded. We will discuss the decoding process and associated error probability in more detail below.

Let \(C_w \) denote the codeword in a given \((n, k) \) code with minimum weight (excluding the all-zero codeword). Then \(C_w H^T = 0_{n-k} \) is just the sum of \(d_{min} \) columns of \(H^T \), since \(d_{min} \) equals the number of 1s (the weight) in the minimum weight codeword of the code. Since the rank of \(H^T \) is at most \(n - k \), this implies that the minimum distance of an \((n, k) \) block code is upperbounded by

\[
d_{\text{min}} \leq n - k + 1.
\]

(8.17)

8.2.4 Cyclic Codes

Cyclic codes are a subclass of linear block codes where all codewords in a given code are cyclic shifts of one another. Specifically, if the codeword \(C = (c_0 c_1 \ldots c_{n-1}) \) is a codeword in a given code, then a cyclic shift by 1, denoted as \(C^{(1)} \) and equal to \(C^{(1)} = (c_{n-1} c_1 \ldots c_{n-2}) \) is also a codeword. More generally, any cyclic shift \(C^{(i)} = (c_{n-i} c_{n-i+1} \ldots c_{n-1}) \) is also a codeword. The cyclic nature of cyclic codes creates a nice structure that allows their encoding and decoding functions to be of much lower complexity than the matrix multiplications associated with encoding and decoding for general linear block codes. Thus, most linear block codes used in practice are cyclic codes.

Cyclic codes are generated via a generator polynomial instead of a generator matrix. The generator polynomial \(g(X) \) for an \((n, k) \) cyclic code has degree \(n - k \) and is of the form

\[
g(X) = g_0 + g_1 X + \ldots + g_{n-k} X^{n-k},
\]

(8.18)

where \(g_i \) is binary \((0 \text{ or } 1)\) and \(g_0 = g_{n-k} = 1\). The \(k \)-bit information sequence \((u_0 \ldots u_{k-1})\) is also written in polynomial form as the message polynomial

\[
u(X) = u_0 + u_1 X + \ldots + u_{k-1} X^{k-1}.
\]

(8.19)

The codeword associated with a given \(k \)-bit information sequence is obtained from the polynomial coefficients of the generator polynomial times the message polynomial, i.e. the codeword \(C = (c_0 \ldots c_{n-1}) \) is obtained from

\[
c(X) = u(X) g(X) = c_0 + c_1 X + \ldots + c_{n-1} X^{n-1}.
\]

(8.20)

A codeword described by a polynomial \(c(X) \) is a valid codeword for a cyclic code with generator polynomial \(g(X) \) if and only if \(g(X) \) divides \(c(X) \) with no remainder (no remainder polynomial terms), i.e.

\[
\frac{c(X)}{g(X)} = q(X)
\]

(8.21)

for a polynomial \(q(X) \) of degree less than \(k \).

Example 8.3:
Consider a (7,4) cyclic code with generator polynomial \(g(X) = 1 + X^2 + X^3 \). Determine if \(c_1(X) = 1 + X^2 + X^5 + X^6 \) and \(c_2(X) = 1 + X^2 + +X^3 + X^5 + X^6 \) are valid codewords for this generator polynomial.

Solution: Division of binary polynomials is similar to division of standard polynomials, except that under binary addition subtraction is the same as addition. Dividing \(c_1(X)1 + X^2 + X^5 + X^6 \) by \(g(X) = 1 + X^2 + X^3 \), we have

\[
\begin{array}{c}
X^3 + X^2 + 1 \\
\overline{X^6 + X^5 + X^3}
\end{array}
= \frac{X^3 + X^2 + 1}{X^6 + X^5 + X^3}
\]

\[8.22\]

Since \(g(X) \) divides \(c(X) \) with no remainder, it is a valid codeword. In fact, we have \(c_1(X) = (1 + X^3)g(X) = u(X)g(X) \), so the 4-bit message sequence corresponding to \(c_1(X) \) is (1001) corresponding to the coefficients of the message polynomial \(u(X) = 1 + X^3 \).

Dividing \(c_2(X)1 + X^2 + X^3 + X^5 + X^6 \) by \(g(X) = 1 + X^2 + X^3 \), we have

\[
\begin{array}{c}
X^3 + X^2 + 1 \\
\overline{X^6 + X^5 + X^3}
\end{array}
= \frac{X^3 + X^2 + 1}{X^6 + X^5 + X^3} \times X^2 + 1
\]

\[8.23\]

where we note that there is a remainder of \(X^2 + 1 \) in the division. Thus, \(c_2(X) \) is not a valid codeword for the code corresponding to this generator polynomial.

Recall that systematic linear block codes have the first \(k \) coded bits equal to the information bits, and the remaining coded bits equal to the parity bits. A cyclic code can be put in systematic form by first multiplying the message polynomial \(u(X) \) by \(X^{n-k} \), yielding

\[
X^{n-k}u(X) = u_0X^{n-k} + u_1X^{n-k+1} + \ldots + u_{k-1}X^{n-1}.
\]

\[8.24\]

This shifts the message bits to the \(k \) rightmost digits of the codeword polynomial. If we next divide (8.24) by \(g(X) \), we obtain

\[
\frac{X^{n-k}u(X)}{g(X)} = q(X) + \frac{p(X)}{g(X)}.
\]

\[8.25\]

where \(q(X) \) is a polynomial of degree \(k - 1 \) and \(p(X) \) is a remainder polynomial of degree \(n - k - 1 \). Multiplying (8.25) through by \(g(X) \) we obtain

\[
X^{n-k}u(X) = q(X)g(X) + p(X).
\]

\[8.26\]

Adding \(p(X) \) to both sides yields

\[
p(X) + X^{n-k}u(X) = q(X)g(X).
\]

\[8.27\]
This implies that \(p(X) + X^{n-k}u(X) \) is a valid codeword since it is divisible by \(g(X) \) with no remainder. The codeword is described by the \(n \) coefficients of the codeword polynomial \(p(X) + X^{n-k}u(X) \). Note that we can express \(p(X) \) (of degree \(n - k - 1 \)) as

\[
p(X) = p_0 + p_1 X + \ldots + p_{n-k-1} X^{n-k-1}.
\]

(8.28)

Combining (8.24) and (8.28) we get

\[
p(X) + X^{n-k}u(X) = p_0 + p_1 X + \ldots + p_{n-k-1} X^{n-k-1} + u_0 X^{n-k} + u_1 X^{n-k+1} + \ldots + u_{k-1} X^{n-1}.
\]

(8.29)

Thus, the codeword corresponding to this polynomial has the first \(k \) bits corresponding to the message bits \(u_0 \ldots u_k \) and the last \(n - k \) bits corresponding to parity bits \(p_0 \ldots p_{nk-1} \), as is required for the systematic form.

Note that the systematic codeword polynomial is generated in three steps: first multiplying the message polynomial \(u(X) \) by \(X^{n-k} \), then dividing \(X^{n-k}u(X) \) by \(g(X) \) to get the remainder polynomial \(p(X) \) (along with the quotient polynomial \(q(X) \), which is not used), and finally adding \(p(X) \) to \(X^{n-k}u(X) \) to get (8.29). The polynomial multiplications are trivial to implement, and the polynomial division is easily implemented with a feedback shift register [2, 1]. Thus, codeword generation for systematic cyclic codes has very low cost and low complexity.

Let us now consider how to characterize channel errors for cyclic codes. The codeword polynomial corresponding to a transmitted codeword is of the form

\[
c(X) = u(X)g(X).
\]

(8.30)

The received codeword can also be written in polynomial form as

\[
r(X) = c(X) + e(X)
\]

(8.31)

where \(e(X) \) is the error polynomial of degree \(n - 1 \) with coefficients equal to 1 where errors occur (e.g. if the transmitted codeword is \(1011001 \) and the received codeword is \(1111000 \) then \(e(X) = X + X^{n-1} \)). The syndrome polynomial for the received codeword \(s(X) \) is defined as the remainder when \(r(X) \) is divided by \(g(X) \), so \(s(X) \) has degree \(n - k - 1 \) and satisfies

\[
r(X) = q(X)g(X) + s(X)
\]

(8.32)

for some quotient polynomial \(q(X) \). Combining (8.30) and (8.31) yields

\[
e(X) = c(X) + r(X) = (u(X) + q(X))g(X) + s(X).
\]

(8.33)

Therefore, the syndrome polynomial \(s(X) \) is identical to the error polynomial \(e(X) \). Moreover, we obtain the syndrome through a division circuit similar to the one used for generating the code. As stated above, this division circuit is typically implemented using a feedback shift register, resulting in a low-cost low-complexity implementation.

8.2.5 Hard Decision Decoding (HDD)

The probability of error for linear block codes depends on whether the decoder uses soft decisions or hard decisions. In hard decision decoding (HDD) each coded bit is demodulated as a 0 or 1, i.e. the demodulator detects each coded bit (symbol) individually. For example, in BPSK, the received symbol is decoded as a 1 if it is closer to \(\sqrt{E_b} \) and as a 0 if it is closer to \(-\sqrt{E_b} \). This form of decoding removes
information that can be used by the channel decoder. In particular, for the BPSK example the distance of the received bit from $\sqrt{E_b}$ and $-\sqrt{E_b}$ can be used in the channel decoder to make better decisions about the transmitted codeword. When these distances are used in the channel decoder it is called soft-decision decoding. Soft decision decoding is not typically used in block codes due to its complexity, and therefore we will not treat soft decision decoding of block codes (we will treat if for other code types, e.g. convolutional codes, later in the chapter).

Hard decision decoding typically uses minimum-distance decoding. In minimum distance decoding the n bits corresponding to a codeword are first demodulated, and the demodulator output is passed to the decoder. The decoder compares this received codeword to the 2^k possible codewords comprising the code, and decides in favor of the codeword that is closest in Hamming distance (differ in the least number of bits) to the received codeword. Mathematically, for a received codeword R the decoder uses the formula

$$\text{pick } C_j \text{ s.t. } d(C_j, R) \leq d(C_i, R) \forall i \neq j.$$

If there is more than one codeword with the same minimum distance to R, one of these is chosen at random by the decoder. This minimum distance decoding method picks the transmitted codeword that is most likely to have produced the received codeword (maximum likelihood decoding), i.e. it picks the C_j satisfying

$$P(R|C_j) \geq P(R|C_i), i = 1, \ldots , 2^k,$$

since the most probable error event in an AWGN channel is the event with the minimum number of errors needed to produce the received codeword. Once the maximum likelihood codeword C_i is determined, it is decoded to the k bits that produce codeword C_i.

Since maximum likelihood detection of codewords is based on a distance decoding metric, we can best illustrate this process in state space, as shown in Figure 81. The minimum distance between codewords, illustrated by the black dots in this figure, is d_{min}. Each codeword is centered inside a circle of radius $t = \lfloor 0.5(d_{\text{min}} - 1)\rfloor$, where $[x]$ denotes the largest integer greater than or equal to x. The shaded dots represent received codewords where one or more bits differ from those of the transmitted codeword.

Minimum distance decoding can be used to either detect or correct errors. Detected errors in a data block either cause the data to be dropped or a retransmission of the data (the ARQ protocol). Error correction allows the corruption in the data to be reversed. For error correction the minimum distance decoding process ensures that a received codeword lying within a Hamming distance t from the transmitted codeword will be decoded correctly. Thus, the decoder can correct t errors, as can be seen from 81. We see from Figure 81 that the decoder can also detect all error patterns of $d_{\text{min}} - 1$ errors. In fact, a decoder for an (n, k) code can detect $2^n - 2^k$ possible error patterns. The reason is that there are $2^k - 1$ nondetectable errors, corresponding to the case where a corrupted codeword is exactly equal to a codeword in the set of possible codewords (of size 2^k) that is not equal to the transmitted codeword. Since there are $2^n - 1$ total possible error patterns, this yields $2^n - 2^k$ nondetectable error patterns.

\textbf{Example 8.4:}

A $(5, 2)$ code has codewords $C_0 = (00000)$, $C_1 = (01011)$, $C_2 = (10101)$, and $C_3 = (11110)$. Suppose the all zero codeword C_0 is transmitted. Find the set of error patterns corresponding to nondetectable errors for this codeword transmission.

\textbf{Solution:} The nondetectable error patterns correspond to the three nonzero codewords, i.e. $e_1 = (01011)$, $e_2 = (10101)$, and $e_3 = (11110)$ are nondetectable error patterns, since adding any of these to C_0 results in a valid codeword.
8.2.6 Probability of Error for HDD in AWGN

The probability of error P_e is defined as the probability that a transmitted codeword is decoded in error. Under hard decision decoding a received codeword may be decoded in error if it contains more than t errors (it will not be decoded in error if there is not alternative codeword closer to the received codeword than the transmitted codeword). The error probability is thus bounded above by the probability that more than t errors occur. Since the bit errors in a codeword occur independently on an AWGN channel, this probability is given by:

$$P_e \leq \sum_{j=t+1}^{n} \binom{n}{j} p^j (1-p)^{n-j},$$

(8.34)

where $p = P_e$ is the probability of coded bit (symbol) error. The probability of symbol error P_s, which corresponds to error probability for uncoded modulation, was treated in Section 6.2 for AWGN channels. For example, if the coded bits are sent via coherent BPSK modulation, from (6.5) we have $P_s = Q(\sqrt{E_s/2N_0})$, where E_s is the energy per symbol and N_0 is the noise power spectral density. Since there are k/n bits per symbol, the relationship between the energy per bit and the energy per symbol is $E_s = kE_b/n$. Thus, powerful block codes with a large number of parity bits (k/n small) reduce the channel energy per symbol and therefore increases the error probability in demodulating the coded bits. However, the error correction capability of these codes typically more than compensates for this reduction, especially at high SNRs. At low SNRs this may not happen, in which case the code exhibits negative coding gain, i.e., it performs worse than uncoded modulation. The bound (8.34) holds with equality when the decoder corrects exactly t or fewer errors in a codeword, and cannot correct for more than t errors in a codeword. A code with this property is called a perfect code.

The probability of bit error after decoding the received codeword in general depends on the particular code and decoder, in particular how bits are mapped to codewords, similar to the bit mapping procedure associated with non-binary modulation. This bit error probability is often approximated as [1]

$$P_b \approx \frac{1}{n} \sum_{j=t+1}^{n} \binom{n}{j} p^j (1-p)^{n-j},$$

(8.35)

which, for $t = 1$, can be simplified to [1] $P_b \approx p - p(1-p)^{n-1}$.

At high SNRs the most likely way to make an error is to mistake a codeword for one of its nearest neighbors. Nearest-neighbor errors yield a pair of upper and lower bounds on error probability. The lower bound is the probability of mistaking a codeword for a given nearest neighbor at distance d_{min}:

$$P_e \geq \sum_{j=t+1}^{d_{min}} \binom{d_{min}}{j} p^j (1-p)^{d_{min}-j}.$$

(8.36)

The upper bound, a union bound, assumes that all of the other $2^k - 1$ codewords are at distance d_{min} from the transmitted codeword. Thus, the union bound is just $2^k - 1$ times (8.37), the probability of mistaking a given codeword for a nearest neighbor at distance d_{min}:

$$P_e \leq (2^k - 1) \sum_{j=t+1}^{d_{min}} \binom{d_{min}}{j} p^j (1-p)^{d_{min}-j}.$$

(8.37)
When the number of codewords is large or the SNR is low, both of these bounds are quite loose.

A tighter upper bound can be obtained by applying the Chernoff bound \(\left(P(X \geq x) \leq e^{-x^2/2} \right. \) for \(X \) a zero-mean unit variance Gaussian random variable) to compute codeword error probability. Using this bound it can be shown [3] that the probability of decoding the all-zero codeword as the \(j \)th codeword with weight \(w_j \) is upper bounded by

\[
P(w_j) \leq [4p(1 - p)]^{w_j/2}.
\] (8.38)

Since the probability of decoding error is upper bounded by the probability of mistaking the all-zero codeword for any of the other codewords, we get the upper bound

\[
P_e \leq \sum_{j=2}^{2^k} [4p(1 - p)]^{w_j/2}.
\] (8.39)

This bound requires the weight distribution \(\{w_j\}_{j=1}^{2^k} \) for all codewords (other than the all-zero codeword corresponding to \(j = 1 \)) in the code. A simpler, slightly looser, upper bound is obtained from (8.39) by using \(d_{\text{min}} \) instead of the individual codeword weights. This simplification yields the bound

\[
P_e \leq (2^k - 1)[4p(1 - p)]^{d_{\text{min}}/2}.
\] (8.40)

Note that the probability of codeword error \(P_e \) depends on \(P_s \), which is a function of the Euclidean distance between modulation points associated with the transmitted symbols. In fact, the best codes for AWGN channels should not be based on Hamming distance: they should be based on maximizing the Euclidean distance between the codewords after modulation. However, this requires that the channel code be designed in conjunction with the modulation. This is the basic concept of trellis codes and turbo trellis coded modulation, which we will treat in Sections 8.7 and 8.5, respectively.

8.2.7 Common Linear Block Codes

We now describe some common linear block codes. More details can be found in [1, 2, 4]. The most common type of block code is a Hamming code, which is parameterized by an integer \(m \geq 2 \). For an \((n, k) \) Hamming code, \(n = 2^m - 1 \) and \(k = 2^m - m - 1 \), so \(n - k = m \) redundant bits are introduced by the code. The minimum distance of all Hamming codes is \(d_{\text{min}} = 3 \), so \(t = 1 \) error in \(n = 2^m - 1 \) coded bits can be corrected. Although Hamming codes are not very powerful, they are perfect codes, and therefore have probability of error given exactly by the right side of (8.34).

Golay and extended Golay codes are another class of channel codes with good performance. The Golay code is a linear \((23,12) \) code with \(d_{\text{min}} = 7 \) and \(t = 3 \). The extended Golay code is obtained by adding a single parity bit to the Golay codes, resulting in a \((24,12) \) block code with \(d_{\text{min}} = 8 \) and \(t = 3 \). The extra parity bit does not change the error correction capability since \(t \) remains the same, but it greatly simplifies implementation since the information bit rate is 1/2 the coded bit rate. Thus, both uncoded and coded bit streams can be generated by the same clock using every other clock sample to generate the uncoded bits. These codes have higher \(d_{\text{min}} \) and thus better error correction capabilities than Hamming codes, at a cost of more complex decoding and a lower code rate \(R_c = k/n \). The lower code rate implies either that the code either has a lower data rate or requires additional bandwidth.

Another powerful class of block codes is the Bose-Chaudhuri-Hocquenghem (BCH) codes. These codes are cyclic codes, and typically outperform all other block codes with the same \(n \) and \(k \) at moderate to high SNRs. This code class provides a large selection of block lengths, code rates, and error correction capabilities. In particular, the most common BCH codes have \(n = 2^m - 1 \) for any integer \(m \geq 3 \).
The P_b for all of the codes discussed in this section under hard decision decoding and coherent BPSK modulation is shown in Figure ???. The plot is based on the approximation (8.35). Recall that for coherent BPSK we have

$$p = P_s = Q \left(\sqrt{\frac{E_0}{5N_0}} \right) = Q \left(\sqrt{\frac{kE_b}{5nN_0}} \right).$$

(8.41)

In this figure the BCH (127,36) code actually has a negative coding gain at low SNRs. This is not uncommon for powerful channel codes due to their reduced energy per symbol, as was discussed in Section 8.2.5.

8.2.8 Nonbinary Block Codes: the Reed Solomon Code

A nonbinary block code has similar properties as the binary code: it has K information symbols mapped into codewords of length N. However the N symbols of each codeword are chosen from a nonbinary alphabet of size $q > 2$. Thus, the codeword symbols can take any value in $\{0, 1, \ldots, q - 1\}$. Usually $q = 2^k$ so that k information bits can be mapped into one codeword symbol.

The most common nonbinary block code is the Reed Solomon (RS) code, used in a range of applications from magnetic recording to Cellular Digital Packet Data (CDPD). RS codes have $N = q - 1 = 2^k - 1$ and $K = 1, 2, \ldots, N - 1$. The value of K dictates the error correction capability of the code. Specifically, an RS code can correct up to $t = \frac{N}{2}(N - K)$ codeword symbol errors. In nonbinary codes the minimum distance between codewords is defined as the number of symbols in which the codewords differ. RS codes achieve a minimum distance of $d_{\text{min}} = N - K + 1$, which is the largest possible minimum distance between codewords for any linear code with the same encoder input and output block lengths.

Since nonbinary codes, and RS codes in particular, generate symbols corresponding to 2^k bits, they are well-matched to M-ary modulation techniques for $M = 2^k$. In particular, with 2^k-ary modulation each codeword symbol is transmitted over the channel as one of 2^k possible constellation points. If the error probability associated with the modulation (the probability of mistaking the received constellation point for a constellation point other than the transmitted point) is P_M, then the probability of error associated with the nonbinary code is upper bounded by

$$P_e \leq \sum_{j=t+1}^{N} \binom{N}{j} P_M^j (1 - P_M)^{N-j},$$

(8.42)

similar to the form for the binary code (8.34).

8.2.9 Block Coding and Interleaving for Fading Channels

In fading channels errors associated with the demodulator tend to occur in bursts, corresponding to the times when the channel is in a deep fade. However, codes designed for AWGN channels cannot typically correct for error bursts longer than t, their error correction capability. In practice slowly fading channels exhibit error bursts much longer than the t associated with codes of reasonable complexity. Therefore, on fading channels, coding is typically combined with interleaving to mitigate the effect of error bursts. The basic premise of coding and interleaving is to spread error bursts due to deep fades over many codewords, such that each received codeword only exhibits a few simultaneous errors, which can be corrected for. The spreading out of burst errors is accomplished by an interleaver and the error correction is accomplished by the code. The size of the interleaver must be large enough so that each symbol in the codeword exhibits independent fading when transmitted over the channel. Slowly fading channels require large interleavers, which in turn can lead to large delays, as we now discuss in more detail.
A block interleaver is an array with \(d \) rows and \(n \) columns, as shown in Figure 8.3. For block interleavers designed for an \((n, k)\) block code, codewords are read into the interleaver by rows so that each row contains an \((n, k)\) codeword. The interleaver contents are read out by columns into the modulator for subsequent transmission over the channel. During transmission bits in the same codeword are separated by \(d - 1 \) other bits, so bits in the same codeword experience independent fading if this separation in time is greater than the channel coherence time: \((d - 1)T_b > T_c\). The deinterleaver is an array identical to the interleaver. Bits are read into the deinterleaver from the demodulator by column so that each row of the deinterleaver contains a codeword (whose bits have been corrupted by the channel.) The deinterleaver output is read into the decoder by rows, i.e. one codeword at a time.

Figure 8.3 illustrates the ability of coding and interleaving to correct for bursts of errors. Suppose our coding scheme is an \((n, k)\) binary block code with error correction capability \(t = 2 \). If this codeword is transmitted through a channel with an error burst of three bits, then three out of four of the codeword bits will be received in error. Since the code can only correct 2 or fewer errors, the codeword will be decoded in error. However, if the codeword is put through an interleaver then, as shown in Figure 8.3, the error burst of three bits will be spread out over three separate codewords. Since a single codebit error can be easily corrected by an \((n, k)\) code with \(t = 2 \), the original information bits can be decoded without error. Convolutional interleavers are similar in concept to block interleavers, and are better suited to convolutional codes, as will be discussed in Section \(\S \).

The purpose of the interleaver is to randomize the location of errors, effectively removing the time-correlation between errors, or error “bursts”. Most codes designed for AWGN channels cannot correct for sequential bursts of errors, and therefore these codes exhibit poor performance in fading channels. However, a coded waveform that has been interleaved can approximate the errors caused by the Rayleigh fading as errors caused by AWGN, and then codes designed for AWGN channels will exhibit reasonable coding gains, although not as high as in AWGN. However, this is a suboptimal coding technique, since the correlation of the fading which affects subsequent bits contains information about the channel which could be used in a true maximum-likelihood decoding scheme. By essentially throwing away this information, the inherent capacity of the channel is decreased \[18\]. Despite this capacity loss, interleaving codes designed for AWGN is a common coding technique for fading channels, since the complexity required to do maximum-likelihood decoding on correlated coded bits is prohibitive. More details on code design for fading channels and their performance can be found in \[2, Section 14.6\].

8.3 Convolutional Codes

A convolutional code generates coded symbols by passing the information bits through a linear finite-state shift register, as shown in Figure 8.4. The shift register consists of \(K \) stages with \(k \) bits per stage. There are \(n \) binary addition operators with inputs taken from all \(K \) stages: these operators produce a codeword of length \(n \) for each \(k \) bit input sequence. Specifically, the binary input data is shifted into each stage of the shift register \(k \) bits at a time, and each of these shifts produces a coded sequence of length \(n \). The rate of the code is \(R_c = k/n \). The number of shift register stages \(K \) is called the constraint length of the code. It is clear from Figure 8.4 that a length-\(n \) codeword depends on \(kK \) input bits, in contrast to a block code which only depends on \(k \) input bits. Convolutional codes are said to have memory since the current codeword depends on more input bits \((kK)\) than the number input to the encoder to generate it \((k)\).
8.3.1 Code Characterization: Trellis Diagrams

When a length-n codeword is generated by a convolutional encoder, this codeword depends both on the k bits input to the first stage of the shift register as well as the state of the encoder, defined as the contents in the other $K-1$ stages of the shift register. In order to characterize a convolutional code, we must characterize how the codeword generation depends both on the k input bits and the encoder state, which has 2^{K-1} possible values. There are multiple ways to characterize convolutional codes, including a tree diagram, state diagram, and trellis diagram [2]. The tree diagram represents the encoder in the form of a tree where each branch represents a different encoder state and the corresponding encoder output. A state diagram is a graph showing the different states of the encoder and the possible state transitions and corresponding encoder outputs. A trellis diagram uses the fact that the tree representation repeats itself once the number of stages in the tree exceeds the constraint length of the code. The trellis diagram simplifies the tree representation by merging nodes in the tree corresponding to the same encoder state. We will focus on the trellis representation of a convolutional code since it is the most common characterization. The details of the trellis diagram representation are best described by an example.

Consider the convolutional encoder shown in Figure 8.5 with $n = 3$, $k = 1$, and $K = 3$. In this encoder, one bit at a time is shifted into Stage 1 of the 3-stage shift register. At a given time t we denote
the bit in Stage i of the shift register as S_i. The 3 stages of the shift register are used to generate a codeword of length 3, $C_1 C_2 C_3$ where from the figure we see that $C_1 = S_1 + S_2$, $C_2 = S_1 + S_2 + S_3$, and $C_3 = S_3$. A bit sequence U shifted into the encoder generates a sequence of coded bits, which we denote by C. We define the encoder state as $S = S_2 S_3$, i.e. the contents of the last two stages of the encoder, and there are $2^2 = 4$ possible values for this encoder state. To characterize the encoder, we must show for each input bit and each possible encoder state what the encoder output will be, and how the new input bit changes the encoder state for the next input bit.

The trellis diagram for this code is shown in Figure 8.6. The solid lines in Figure 8.6 indicate the encoder state transition when a 0 bit is input to Stage 1 of the encoder, and the dashed lines indicate the state transition corresponding to a 1 bit input. For example, starting at state $S = 00$, if a 0 bit is
input to Stage 1 then, when the shift register transitions, the new state will remain as \(S = 00 \) (since the 0 in Stage 1 transitions to Stage 2, and the 0 in Stage 2 transitions to Stage 3, resulting in the new state \(S = S_2S_3 = 00 \)). On the other hand, if a 1 bit is input to Stage 1 then, when the shift register transitions, the new state will become \(S = 10 \) (since the 1 in Stage 1 transitions to Stage 2, and the 0 in Stage 2 transitions to Stage 3, resulting in the new state \(S = S_2S_3 = 10 \)). The encoder output corresponding to a particular encoder state \(S \) and input \(S_1 \) is written next to the transition lines in Figure 8.6. This output is the encoder output that results from the encoder addition operations on the bits \(S_1, S_2 \) and \(S_3 \) in each stage of the encoder. For example, if \(S = 00 \) and \(S_1 = 1 \) then the encoder output \(C_1C_2C_3 \) has \(C_1 = S_1 + S_2 = 1, C_2 = S_1 + S_2 + S_3 = 1, \) and \(C_3 = S_3 = 0 \). This output 110 is drawn next to the dashed line transitioning from state \(S = 00 \) to state \(S = 10 \) in Figure 8.6. Note that the encoder output for \(S_1 = 0 \) and \(S = 00 \) is always the all-zero codeword regardless of the addition operations that form the codeword \(C_1C_2C_3 \), since summing together any number of 0s always yields 0. The portion of the trellis between time \(t_i \) and \(t_{i+1} \) is called the \(i \)th branch of the trellis. Figure 8.6 indicates that the initial state at time \(t_0 \) is the all-zero state. The trellis achieves steady state, defined as the point where all states can be entered from either of two preceding states, at time \(t_3 \). After this steady state is reached, the trellis repeats itself in each time interval. Note also that in steady state each state transitions to one of two possible new states. In general trellis structures starting from the all-zero state at time \(t_0 \) achieve steady-state at time \(t_K \).

![Figure 8.6: Trellis Diagram](image)

Note that for general values of \(k \) and \(K \), the trellis diagram will have \(2^{K-1} \) states, where each state has \(2^k \) paths entering each node, and \(2^k \) paths leaving each node. Thus, the number of paths through the trellis grows exponentially with \(k, K \), and the length of the trellis path.
8.3.2 Maximum Likelihood Decoding

The convolutional code generated by the finite state shift register is basically a finite state machine. Thus, unlike an \((n, k)\) block code, where maximum likelihood detection entails finding the length-\(n\) codeword that is closest to the received length-\(n\) codeword, maximum likelihood detection of a convolutional code entails finding the most likely sequence of coded bits \(\mathbf{C}\) given the received sequence of coded bits, which we denote by \(\mathbf{Z}\). In particular, for a received sequence \(\mathbf{Z}\), the decoder decides that coded bit sequence \(\mathbf{C}^*\) was transmitted if

\[
P(\mathbf{Z}|\mathbf{C}^*) \geq P(\mathbf{Z}|\mathbf{C}) \forall \mathbf{C}.
\]

(8.43)

Since each possible sequence \(\mathbf{C}\) corresponds to one path through the trellis diagram of the code, maximum likelihood decoding corresponds to finding the maximum likelihood path through the trellis diagram. For an AWGN channel, noise affects each coded symbol independently. Thus, for a convolutional code of rate \(1/n\), we can express the likelihood (8.43) as

\[
P(\mathbf{Z}|\mathbf{C}) = \prod_{i=0}^{\infty} P(Z_i|C_i) = \prod_{i=0}^{\infty} \prod_{j=1}^{n} P(Z_{ij}|C_{ij}),
\]

(8.44)

where \(C_i\) is the portion of the code sequence \(\mathbf{C}\) corresponding to the \(i\)th branch of the trellis, \(Z_i\) is the portion of the received code sequence \(\mathbf{Z}\) corresponding to the \(i\)th branch of the trellis, \(C_{ij}\) is the \(j\)th code symbol corresponding to \(C_i\) and \(Z_{ij}\) is the \(j\)th received code symbol corresponding to \(Z_i\). The log

likelihood function is defined as the log of \(P(\mathbf{Z}|\mathbf{C})\), given as

\[
\log P(\mathbf{Z}|\mathbf{C}) = \sum_{i=0}^{\infty} \sum_{j=1}^{n} \log P(Z_{ij}|C_{ij}),
\]

(8.45)

The expression

\[
B_i = \sum_{j=1}^{n} \log P(Z_{ij}|C_{ij})
\]

is called the branch metric since it indicates the component of (8.45) associated with the \(i\)th branch of the trellis. The sequence or path that maximizes the likelihood function also maximizes the log likelihood function since the log is monotonically increasing. However, it is computationally more convenient for the decoder to use the log likelihood function since it involves a summation rather than a product. The log likelihood function associated with a given path through the trellis is also called the path metric which, from (8.45), is equal to the sum of branch metrics along each branch of the path. The path through the trellis with the maximum path metric corresponds to the maximum likelihood path.

The decoder can use either hard decision or soft decision for the expressions \(\log P(Z_{ij}|C_{ij})\) in the log likelihood metric. For hard decision decoding, the \(Z_{ij}\) is decoded as a 1 or a 0. The probability of hard decision decoding error depends on the modulation and is denoted as \(p\). If \(\mathbf{Z}\) and \(\mathbf{C}\) are \(L\) bits long and differ in \(d\) places (i.e. their Hamming distance is \(d\)), then

\[
P(\mathbf{Z}|\mathbf{C}) = p^d(1-p)^{L-d}
\]

and

\[
\log P(\mathbf{Z}|\mathbf{C}) = -d \log \frac{1-p}{p} + L \log(1-p).
\]

(8.47)

Since \(p < .5\), (8.47) is minimized when \(d\) is minimized. So the coded sequence \(\mathbf{C}\) with minimum Hamming distance to the received sequence \(\mathbf{Z}\) corresponds to the maximum likelihood sequence.
In soft decision decoding the value of the received coded symbols \((Z_{ij})\) are used directly in the decoder, rather than quantizing them to 1 or 0. For example, if the \(C_{ij}\) are sent via BPSK over an AWGN channel then

\[
Z_{ij} = \sqrt{E_s}(2C_{ij} - 1) + n_{ij}, \quad (8.48)
\]

where \(E_s = kE_b/n\) is the energy per symbol (coded bit) and \(n_{ij}\) denotes Gaussian noise of mean zero and variance \(\sigma^2 = .5N_0\). Thus,

\[
p(Z_{ij}|C_{ij}) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{(Z_{ij} - \sqrt{E_s}(2C_{ij} - 1))^2}{2\sigma^2} \right\}. \quad (8.49)
\]

Maximizing this likelihood function is equivalent to choosing the \(C_{ij}\) that is closest in Euclidean distance to \(Z_{ij}\). In determining which sequence \(C\) maximizes the log likelihood function (8.45), any terms that are common to two different sequences \(C_1\) and \(C_2\) can be neglected, since they contribute the same amount to the summation. Similarly, we can scale all terms in (8.45) without changing the maximizing sequence. Thus, by neglecting scaling factors and terms in (8.49) that are common to any \(C_{ij}\), we can replace \(\sum_{i=1}^{n} \log p(Z_{ij}|C_{ij})\) in (8.45) with the equivalent branch metric

\[
\mu_i = \sum_{j=1}^{n} Z_{ij}(2C_{ij} - 1) \quad (8.50)
\]

and obtain the same maximum likelihood output.

We now illustrate maximum likelihood decoding under both hard and soft decisions for the convolutional code of Figure 8.5 with the trellis diagram in Figure 8.6. For simplicity, we will only consider two possible paths through the trellis, and compute their corresponding likelihoods for a given received sequence \(Z\). Assume we start at time \(t_0\) in the all-zero state. The first path we consider is the all-zero path, corresponding to the all-zero input sequence. The second path we consider transitions from state \(S = 00\) at time \(t_0\) to \(S = 10\) at time \(t_1\), then to state \(S = 01\) at time \(t_2\), and finally to state \(S = 00\) at time \(t_3\) at which point this path merges with the all-zero path. Since the paths and therefore their branch metrics at times \(t < t_0\) and \(t > t_3\) are the same, the maximum likelihood path corresponds to the path whose sum of branch metrics over the branches in which the two paths differ is smaller. From Figure 8.6 we see that the all-zero path through the trellis generates the sequence \(C_0 = 00000000\) over the first three branches in the trellis. The sequence corresponding to the second path generates the coded sequence \(C_1 = 110110011\) over the first three branches in the trellis.

Let us first consider hard decision decoding with error probability \(p\). Suppose the received sequence over these three branches is \(Z = 100110111\). Note that the Hamming distance between \(Z\) and \(C_0\) is 6 while the Hamming distance between \(Z\) and \(C_1\) is 2. As discussed above, the most likely path therefore corresponds to \(C_1\) since it has minimum Hamming distance to \(Z\). The path metric for the all-zero path is

\[
M_0 = \sum_{i=0}^{2} \sum_{j=1}^{3} \log P(Z_{ij}|C_{ij}) = 6\log p + 3\log(1 - p), \quad (8.51)
\]

while the path metric for the other path is

\[
M_1 = \sum_{i=0}^{2} \sum_{j=1}^{3} \log P(Z_{ij}|C_{ij}) = 2\log p + 7\log(1 - p). \quad (8.52)
\]

Assuming \(p << 1\), which is generally the case, this yields \(M_0 \approx 3\) and \(M_1 \approx 7\). This confirms that the second path has the largest path metric.
Let us now consider soft decision decoding over time t_0 to t_3. Suppose the received sequence (before demodulation) over these three branches, for $E_s = 1$, is $Z = (.8, -.35, -.15, 1.35, 1.22, -0.62, .87, 1.08, .91)$. The path metric for the all zero path is

$$M_0 = \sum_{i=0}^{2} \mu_i = \sum_{i=0}^{3} \sum_{j=1}^{3} Z_{ij}(2C_{ij} - 1) = \sum_{i=0}^{2} \sum_{j=1}^{3} -Z_{ij} = -5.11.$$

The path metric for the second path is

$$M_1 = \sum_{i=0}^{2} \sum_{j=1}^{3} Z_{ij}(2C_{ij} - 1) = 6.65.$$

Thus, the second path has a higher path metric and is therefore the maximum likelihood path.

The difficulty with maximum likelihood decoding is that the complexity of computing the log likelihood function (8.45) grows exponentially with the length i of the coded sequence. The Viterbi algorithm, discussed in the next section, reduces the complexity of maximum likelihood decoding by taking advantage of the structure of the path metric computation.

8.3.3 The Viterbi Algorithm

The Viterbi algorithm, discovered by Viterbi in 1967 [6] reduces the complexity of maximum likelihood decoding by systematically removing paths from consideration that cannot achieve the highest path metric. The basic premise is to look at the partial path metrics associated with all paths entering a given node (Node N) in the trellis. Since the possible paths through the trellis leaving node N are the same for each entering path, the complete trellis path with the highest path metric that goes through Node N must coincide with the path that has the highest partial path metric up to node N. This is illustrated in Figure 8.7, where Path 1, Path 2, and Path 3 enter Node N (at trellis depth n) with partial path metrics $P^l = \sum_{i=0}^{N} B_i^l, l = 1, 2, 3$ up to this node. Assume P^1 is the largest of these partial path metrics. The complete path with the highest metric, shown in bold, has branch metrics $\{B_k\}$ after node N. The maximum likelihood path starting from Node N, i.e. the path starting from node N with the largest path metric, has partial path metric $\sum_{i=0}^{N} B_i$. The complete path metric for Path $l, l = 1, 2,$ or 3 up to node N and the maximum likelihood path after node N is $P^l + \sum_{k=n}^{\infty} B_k, l = 1, 2, 3$, and thus the path with the maximum partial path metric P^l up to node N (Path 1 in this example) must correspond to the path with the largest path metric that goes through node N.

The Viterbi algorithm takes advantage of this structure by discarding all paths entering a given node except the path with the largest partial path metric up to that node. The path that is not discarded is called the survivor path. Thus, for the example of Figure 8.7, Path 1 is the survivor at node N and Paths 2 and 3 are discarded from further consideration. Thus, at every stage in the trellis there are 2^{K-1} surviving paths, one for each possible encoder state. A branch for a given stage of the trellis cannot be decoded until all surviving paths at a subsequent trellis stage overlap with that branch, as shown in Figure ???. This figure shows the surviving paths at time t_{k+3}. We see in this figure that all of these surviving paths can be traced back to a common stem from time t_k to t_{k+1}. At this point the decoder can output the codeword C_i associated with this branch of the trellis. Note that there is not a fixed decoding delay associated with how far back in the trellis a common stem occurs for a given set of surviving paths, this delay depends on $k, K,$ and the specific code properties. To avoid a random decoding delay, the Viterbi algorithm is typically modified such that at a given stage in the trellis, the most likely branch N stages back is decided upon based on the partial path metrics up to that point. While this modification...
does not yield exact maximum likelihood decoding, for N sufficiently large (typically $N \geq 5K$) it is a good approximation.

The Viterbi algorithm must keep track of $2^{k(K-1)}$ surviving paths and their corresponding metrics. At each stage, 2^k metrics must be computed for each node to determine the surviving path, corresponding to the 2^k paths entering each node. Thus, the number of computations in decoding and the memory requirements for the algorithm increase exponentially with k and K. This implies that for practical implementations convolutional codes are restricted to relatively small values of k and K.

8.3.4 Distance Properties

As with block codes, the error correction capability of convolutional codes depends on the distance between codeword sequences. Since convolutional codes are linear, the minimum distance between all codeword sequences can be found by determining the minimum distance from any sequence or equivalently any trellis path to the all-zero sequence/trellis path. Clearly the trellis path with minimum distance to the all-zero path will diverge and remerge with the all-zero path, such that the two paths coincide except over some number of trellis branches. To find this minimum distance path we must consider all paths that diverge from the all-zero state and then remerge with this state. As an example, in Figure 8.8 we draw all paths in Figure 8.6 between times t_0 and t_5 that diverge and remerge with the all-zero state. Note that Path 2 is identical to Path 1, just shifted in time, and therefore is not considered as a separate path. Note also that we could look over a longer time interval, but any paths that diverge and remerge over this longer interval would traverse the same branches (shifted in time) as one of these paths plus some additional branches, and would therefore have larger path metrics. In particular, we see that Path 4 traverses the same branches as Path 1, 00-10-01 and then later 01-00, plus the branches 01-10-01. Thus we need not consider a longer time interval to find the minimum distance path. For each path in Figure 8.6 we label the Hamming distance of the codeword on each branch to the all-zero codeword in the corresponding branch of the all-zero path. By summing up the Hamming distances on all branches of each path we see that Path 1 has a Hamming distance of 6 and Paths 3 and 4 have Hamming distances of 8. Recalling that dashed lines indicate 1 bit inputs while solid lines indicate 0 bit inputs, we see that
Path 1 corresponds to an input bit sequence from t_0 to t_5 of 10000, Path 3 corresponds to an input bit sequence of 11000, and Path 4 corresponds to an input bit sequence of 10100. Thus, Path 1 results in one bit error, relative to the all zero sequence, and Paths 3 and 4 result in two bit errors.

We define the minimum free distance $d_{f,\text{free}}$ of a convolutional code, also called the free distance, to be the minimum Hamming distance of all paths through the trellis to the all-zero path, which for this example is 6. The error correction capability of the code is obtained in the same manner as for block codes, with d_{min} replaced by d_f, so that the code can correct t channels errors with

$$t = \left\lfloor \frac{d_f - 1}{2} \right\rfloor.$$

![Figure 8.8: Path Distances to the All-Zero Path](image)

8.3.5 State Diagrams and Transfer Functions

The transfer function of a convolutional code is used to characterize paths that diverge and remerge from the all-zero path, and is also used to obtain probability of error bounds. The transfer function is obtained from the code's state diagram representing possible transitions from the all-zero state to the all-zero state. The state diagram for the code illustrated in Figure 8.6 is shown in Figure 8.9, with the all-zero state \(a = 00\) split into a second node \(e\) to facilitate representing paths that begin and end in this state. Transitions between states due to a 0 input bit are represented by solid lines, while transitions due to a 1 input bit are represented by dashed lines. The branches of the state diagram are labeled as either $D^0 = 1$, D^1, or D^2, where the exponent of D corresponds to the Hamming distance between the codeword, which is shown for each branch transition, and the all-zero codeword in the all-zero path. The self-loop in node \(a\) can be ignored since it does not contribute to the distance properties of the code.

The state diagram can be represented by state equations for each state. For the example of Figure 8.6 we obtain state equations corresponding to the four states:

$$X_c = D^3X_a + DX_bX_b = DX_c + DX_dX_d = D^2X_c + DX_dX_c = D^2X_b,$$

(8.53)
where X_a, \ldots, X_e are dummy variables characterizing the partial paths. The transfer function of the code, describing the paths from state a to state e, is defined as $T(D) = X_e / X_a$. By solving the state equations for the code, which can be done using standard techniques such as Mason’s formula we obtain a transfer function of the form

$$T(D) = \sum_{d=d_f}^{\infty} a_d D^d,$$

where a_d is the number of paths with Hamming distance d from the all-zero path. As stated above, the minimum Hamming distance to the all-zero path is d_f, and the transfer function $T(D)$ indicates that there are a_{d_f} paths with this minimum distance. For the example of Figure 8.6, we can solve the state equations given in 8.53 to get the transfer function

$$T(D) = \frac{D^6}{1 - 2D^2} = D^6 + 2D^8 + 4D^{10} + \ldots$$

We see from the transfer function that there is one path with minimum distance $d_f = 6$, and 2 paths with Hamming distance 8, which is consistent with Figure 8.8. The transfer function is a convenient shorthand for enumerating the number and corresponding Hamming distance of all paths in a particular code that diverge and later remerge with the all-zero path.

While the transfer function is sufficient to capture the number and Hamming distance of paths in the trellis to the all-zero path, we need a more detailed characterization to compute the bit error probability of the convolutional code. We therefore introduce two additional parameters into the transfer function, N and J for this additional characterization. The factor N is introduced on all branch transitions associated with a 1 input bit (dashed lines in Figure 8.9). The factor J is introduced to every branch in the state diagram, such that the exponent of J in the transfer function equals the number of branches in any given path from node a to node e. The extended state diagram corresponding to the trellis of Figure 8.6 is shown in Figure 8.10.

The extended state diagram is also represented by state equations. For the example of Figure 8.10 these are given by:

$$X_c = JN D^3 X_a + JN DX_b X_b = JDX_c + JDX_d X_d = JN D^2 X_c + J N D^2 X_d X_e = J D^2 X_b,$$

Figure 8.9: State Diagram
Similar to the previous transfer function definition, the transfer function associated with this extended state is defined as \(T(D, N, J) = X_e/X_a \), which for this example yields

\[
T(D, N, J) = \frac{J^3 N D^6}{1 - JN D^2(1 + J)} = J^3 N D^6 + J^4 N^2 D^8 + J^5 N^3 D^{10} + \ldots \quad (8.57)
\]

The factor \(J \) is most important when we are interested in transmitting finite length sequences: for infinite length sequences we typically set \(J = 1 \) to obtain the transfer function for the extended state

\[
T(D, N) = T(D, N, J = 1). \quad (8.58)
\]

The transfer function for the extended state tells us more information about the diverging and remerging paths; namely, the minimum distance path with Hamming distance 6 is of length 3 and results in a single bit error (exponent of \(N \) is one), one path of Hamming distance 8 is of length 4 and results in 2 bit errors, and the other path of Hamming distance 8 is of length 5 and results in 2 bit errors, consistent with Figure 8.8. The extended transfer function is a convenient shorthand to represent the Hamming distance, length, and number of bit errors corresponding to each diverging and remerging path of a code from the all zero path. We will see in the next section that this convenient representation is very useful in characterizing the probability of error for convolutional codes.

8.3.6 Error Probability for Convolutional Codes

Since convolutional codes are linear codes, the probability of error can be obtained by assuming that the all-zero sequence is transmitted, and determining the probability that the decoder decides in favor of a different sequence. We will consider error probability for both hard decision and soft decision decoding.

We first consider soft-decision decoding. We are interested in the probability that the all-zero sequence is sent, but a different sequence is decoded. If the coded bits output from the convolutional encoder are sent over an AWGN channel using coherent BPSK modulation, then it can be shown that if the all-zero sequence is transmitted, the probability of mistaking this sequence with a sequence Hamming distance \(d \) away is [2]

\[
P_2(d) = Q\left(\sqrt{\frac{2E_a}{N_0}d}\right) = Q\left(\sqrt{2\gamma_b R_c d}\right). \quad (8.59)
\]
We call this probability the *pairwise error probability*, since it is the error probability associated with a pairwise comparison of two paths that differ in \(d \) bits. The transfer function enumerates all paths that diverge and remerge with the all zero path, so by the union bound we can upper bound the probability of mistaking the all-zero path for another path through the trellis as

\[
P_e \leq \sum_{d_f} a_d Q \left(\sqrt{2 \gamma_b R_d} \right),
\]

(8.60)

where \(a_d \) denotes the number of paths of distance \(d \) from the all-zero path. This bound can be expressed in terms of the transfer function itself if we use an exponential to upper bound the \(Q \) function, i.e. we use the fact that

\[
Q \left(\sqrt{2 \gamma_b R_d} \right) \leq e^{-\gamma d R_d}.
\]

We then get the upper bound

\[
P_e < T(D)|_{D=e^{-\gamma d R_d}}.
\]

(8.61)

While this upper bound tells us the probability of mistaking one sequence for another, it does not yield the probability of bit error, which is more fundamental. We know that the exponent in the factor \(N \) of \(T(D, N) \) indicates the number of information bit errors associated with selecting an incorrect path through the trellis. Specifically, we can express \(T(D, N) \) as

\[
T(D, N) = \sum_{d=d_f} a_d D^d N^{f(d)},
\]

(8.62)

where \(f(d) \) denotes the number of bit errors associated with a path of distance \(d \) from the all-zero path. Then we can upper bound the bit error probability, for \(k = 1 \), as [2]

\[
P_b \leq \sum_{d_f} a_d f(d) Q \left(\sqrt{2 \gamma_b R_d} \right),
\]

(8.63)

where the only difference with (8.60) is the weighting factor \(f(d) \) corresponding to the number of bit errors in each incorrect path. If the \(Q \) function is upper bounded by the complex exponential as above we get the upper bound

\[
P_b < \frac{dT(D, N)}{dN} \bigg|_{N=1, D=e^{-\gamma d R_d}}.
\]

(8.64)

If \(k > 1 \) then we divide (8.63) or (8.64) by \(k \) to obtain \(P_b \).

All of these bounds assume coherent BPSK transmission (or coherent QPSK, which is equivalent to two independent BPSK transmissions). For other modulations, the pairwise error probability \(P_2(d) \) must be recomputed based on the probability of error associated with the given modulation.

Let us now consider hard decision decoding. The probability of selecting an incorrect path at distance \(d \) from the all-zero path, for \(d \) odd, is given by

\[
P_2(d) = \sum_{k=\frac{d+1}{2}}^{d} \binom{d}{k} p^k (1-p)^{(d-k)},
\]

(8.65)

where \(p \) is the probability of error on the channel. This is because the incorrect path will be selected only if the decoded path is closer to the incorrect path than to the all-zero path, i.e. the decoder makes at least \(.5(d+1) \) errors. If \(d \) is even, then the incorrect path is selected when the decoder makes more
than $0.5d$ errors, and the decoder makes a choice at random of the number of errors is exactly $0.5d$. We can simplify the pairwise error probability using the Chernoff bound to yield

$$P_2(d) < [4p(1 - p)]^{d/2}.$$ \hfill (8.66)

Following the same approach as in soft decision decoding, we then obtain the error probability bound as

$$P_e < \sum_{d_f} a_d[4p(1 - p)]^{d/2} < T(D)|_{D = \sqrt{4p(1-p)}},$$ \hfill (8.67)

and

$$P_b < \sum_{d_f} a_d f(d) P_2(d) = \frac{dT(D, N)}{dN} |_{N=1, D = \sqrt{4p(1-p)}}.$$ \hfill (8.68)

8.3.7 Convolutional Coding and Interleaving for Fading Channels

As with block codes, convolutional codes suffer performance degradation in fading channels, since the code is not designed to correct for bursts of errors. Thus, it is common to use an interleaver to spread out error bursts. In block coding the interleaver spreads errors across different codewords. Since there is no similar notion of a codeword in convolutional codes, a slightly different interleaver design is needed to mitigate the effect of burst errors. The interleaver commonly used with convolutional codes, called a convolutional interleaver is designed to both spread out burst errors and to work well with the incremental nature of convolutional code generation [8, 7].

The basic block diagram for a convolutional interleaver is shown in Figure 8.11. We see from this figure that the convolutional interleaver delays the transmission through the channel of the encoder output by progressively larger amounts, and this delay schedule is reversed at the receiver. Specifically, the interleaver takes sequential outputs of the encoder and separates them by $D - 1$ other symbols in the channel transmission, thereby breaking up burst errors in the channel. Note that a convolutional encoder can also be used with a block code, but it is most commonly used with a convolutional code. The total memory and delay associated with the convolutional interleaver is about half that of the block interleaver due to the triangular nature of the convolutional interleaving function.

![Convolutional Coding and Interleaving](image)

Figure 8.11: Convolutional Coding and Interleaving

8.4 Concatenated Codes

A concatenated code uses two levels of coding: an inner code and an outer code, as shown in Figure 8.12. The inner code is typically designed to remove most of the errors introduced by the channel, and the outer code is typically a less powerful code that further reduces error probability when the received
-coded bits have a relatively low probability of error (since most errors are correctly by the inner code). Concatenated codes often have the inner and outer codes separated by an interleaver to break up block errors introduced by the channel. Concatenated codes typically achieve very low error probability with less complexity than a single code with the same error probability performance. A common concatenated code used in CD recordings has a convolutional inner code and a Reed Soloman (block) outer code [4]. The decoding of concatenated codes is typically done in two stages, as indicated in the figure: first the inner code is decoded, and then the outer code is decoded separately. This is a suboptimal technique, since in fact both codes are working in tandem to reduce error probability. However, the ML decoder for a concatenated code, which performs joint decoding, is highly complex. It was discovered in the mid 1990s that a near-optimal decoder for concatenated codes can be obtained based on iterative decoding, and that is the basic premise behind turbo codes, described in the next section.

![Concatenated Coding](image)

Figure 8.12: Concatenated Coding

8.5 Turbo Codes

Turbo codes, introduced in 1993 in a landmark paper by Berrou, Glavieux, and Thitimajshima [10], are very powerful encoding technique that can come within a fraction of a dB of the Shannon capacity limit on AWGN channels. Turbo codes and the more general family of codes on graphs with iterative decoding algorithms [11, 12] have been studied extensively, yet the reason that they work so well remains somewhat elusive. The main ideas behind codes on graphs were introduced by Gallager in 1962 [13], however at the time these coding techniques were thought impractical and were generally not pursued by researchers in the field. The landmark 1993 paper on turbo codes [10] provided more than enough motivation to revisit Gallager’s and other’s work on iterative, graph-based decoding techniques.

As first described by Berrou et al, turbo error control consists of two key components: parallel concatenated encoding and iterative, “turbo” decoding [10, 14]. A typical parallel concatenated encoder is shown in Figure 8.13. It consists of two parallel convolutional encoders separated by an interleaver, with the input to the channel being the data bits \(m \) along with the parity bits \(X_1 \) and \(X_2 \) output from each of the encoders in response to input \(m \). The key to parallel concatenated encoding lies in the recursive nature of the encoders and the impact of the interleaver on the information stream. Interleavers also play
a significant role in the elimination of error floors [14].

Figure 8.13: Parallel Concatenated (Turbo) Encoder.

Iterative, or "turbo" decoding exploits the component-code substructure of the turbo encoder by associating a component decoder with each of the component encoders. More specifically, each decoder performs soft input/soft output decoding, as shown in Figure 8.14. In this figure Decoder 1 generates a soft decision in the form of a probability measure \(p(m_1) \) on the transmitted data bits based on the received codeword \((m, X_1) \). This reliability information is passed to Decoder 2, which generates its own probability measure \(p(m_2) \) from its received codeword \((m, X_2) \) and the probability measure \(p(m_1) \). This reliability information is input to Decoder 1, which revises its measure based on this information and the original received codeword. Decoder 1 sends the new reliability information to Decoder 2, which revises its measure using this new information. Turbo decoding proceeds in an iterative manner, with the two component decoders alternately updating their probability measures. Ideally the decoders eventually agree on probability measures that reduces to hard decisions \(m = m_1 = m_2 \). However, the stopping condition for turbo decoding is not well-defined, in part because there are many cases in which the turbo decoding algorithm does not converge; i.e., the decoders cannot agree on the value of \(m \). Several methods have been proposed for detecting convergence (if it occurs), including bit estimate variance [Burr96] and neural net-based techniques [15].

Turbo codes have exception performance in AWGN. At a BER of \(10^{-5} \) a recursive convolutional systematic (RCS) Turbo code provides an 8.5 dB coding gain over uncoded systems and lies within 1.5 dB of the Shannon capacity limit. The intuitive explanation for this amazing performance is that the code complexity introduced by the encoding structure is similar to the codes that achieve Shannon capacity. The iterative procedure of the turbo decoder allows these codes to be decoded without excessive complexity.

8.6 Low Density Parity Check Codes

Low density parity check (LDPC) codes were originally invented by Gallager in his 1961 Masters thesis [?]. However, these codes were largely ignored until the introduction of turbo codes, which rekindled some of same ideas. Subsequent to the landmark paper on turbo codes in 1993 [?], LDPC codes were reinvented by Mackay and Neil [?] and by Wiber [?] in 1996. Shortly thereafter it was recognized that these new code designs were actually reinventions of Gallager’s original work, and over the last decade
much work has been devoted to finding the capacity limits, encoder and decoder designs, and practical implementation of LDPC codes for different channels.

LDPC codes are linear block codes with a particular structure for the parity check matrix H, which was defined in Section 8.2.3. Specifically, a (d_v,d_c) regular binary LDPC has a parity check matrix H with d_v ones in each column and d_c ones in each row, where d_v and d_c are chosen as part of the codeword design and are small relative to the codeword length. Since the fraction of nonzero entries in H is small, the parity check matrix for the code has a low density, and hence the name low density parity check codes.

Provided that the codeword length is long, LDPC codes achieve performance close to the Shannon limit, in some cases surpassing the performance of parallel or serially concatenated (turbo) codes [36]. The fundamental practical difference between turbo codes and LDPC codes is that turbo codes tend to have low encoding complexity (linear in blocklength) but high decoding complexity (due to their iterative nature and message passing). In contrast, LDPC codes tend to have relatively high encoding complexity (quadratic in blocklength) but low decoding complexity. In particular, like turbo codes, LDPC decoding uses iterative techniques, which are related to Pearl's belief propagation commonly used by the artificial intelligence community [37]. However, the belief propagation corresponding to LDPC decoding is simpler than for turbo decoding, thereby making the LDPC iterative decoder much simpler [37, 38, 39]. In addition, the belief propagation decoding is parallelizable and can be closely approximated with very low complexity decoders [32]. Finally, the decoding algorithm for LDPC codes can detect when a correct codeword has been detected, which is not necessarily the case for turbo codes.

Research in LDPC codes is ongoing, including capacity limits for these codes [32], effective code designs [41], efficient encoding and decoding algorithms [39, 40], and expanding the code designs to include nonregular [29, 36] and nonbinary LDPC codes [33] as well as coded modulation [34].
8.7 Coded Modulation

Although Shannon proved the capacity theorem for AWGN channels in the late 1940s, it wasn’t until recently that rates approaching the Shannon limit on bandlimited AWGN channels have been attained [30]. Shannon’s theorem predicted the possibility of reducing both energy and bandwidth simultaneously through coding. However, traditional error-correcting coding schemes, such as block and convolutional codes, reduce transmit power at the expense of increased bandwidth, since the added code bits increase the bit rate [11].

The spectrally-efficient coding breakthrough came when Ungerboeck [12] introduced a coded-modulation technique to jointly optimize both channel and source (modulation) coding. This joint optimization results in significant coding gains without bandwidth expansion. Ungerboeck’s trellis-coded modulation, which uses multilevel/phase signal modulation and simple convolutional coding with mapping by set partitioning, has remained superior over more recent developments in coded modulation (coset and lattice codes), as well as more complex trellis codes [13]. We now outline the general principles of this coding technique. Comprehensive treatments of trellis, lattice, and coset codes can be found in [14, 30, 13], respectively.

8.7.1 Coded Modulation for AWGN Channels

The basic scheme for trellis and lattice coding, or more generally, any type of coset coding, is depicted in Figure 8.15. There are five elements required to generate the coded-modulation:

1. A conventional encoder E, block or convolutional, that operates on k uncoded data bits to produce $k + r$ coded bits.

2. A subset selector, which uses the coded bits to choose one of 2^{k+r} subsets from a partition of the N-dimensional signal constellation.

3. A point selector, which uses $n - k$ additional uncoded bits to choose one of the 2^{n-k} signal points in the selected subset.

4. A constellation map, which maps the selected point from N-dimensional space to a sequence of $N/2$ points in two-dimensional space.

5. A QAM modulator.

The first two steps described above are referred to as channel coding, and the remaining steps are called source coding or modulation. The receiver essentially reverses the modulation and coding steps: after QAM demodulation and an inverse $2/N$ constellation mapping, decoding is done in essentially two stages: first, the points within each subset that are closest to the received signal point are determined; then, the maximum-likelihood subset sequence is calculated. When the encoder E is a convolutional encoder, this coded-modulation scheme is referred to as a trellis code; for E a block encoder, it is called a lattice (or block) code.

The steps described above essentially decouple the channel coding gain from the source (signal-shaping) gain. Specifically, the code distance properties, and thus the channel coding gain, are determined by the encoder (E) properties and the subset partitioning, which are essentially decoupled from the source coding. We will discuss the channel coding gain in more detail below. Optimal shaping of the signal constellation provides up to an additional 1.53 dB of shape gain (for asymptotically large N), independent
of the channel coding scheme\(^1\). However, the performance improvement from shape gain is offset by the corresponding complexity of the constellation map, which grows exponentially with \(N\). The size of the transmit constellation is determined by the average power constraint, and doesn’t affect the source (or channel) coding gain.

The channel coding gain results from a selection of all possible sequences of signal points. If we consider a sequence of \(N\) input bits as a point in \(N\)-dimensional space (the sequence space), then this selection is used to guarantee some minimum distance \(d_{\text{min}}\) in the sequence space between possible input sequences. Errors generally occur when a sequence is mistaken for its closest neighbor, and in AWGN channels this error probability is a decreasing function of \(d_{\text{min}}^2\). We can thus decrease the BER by increasing the separation between each point in the sequence space by a fixed amount (“stretching” the space). However, this will result in a proportional power increase, so no net coding gain is realized. The effective power gain of the channel code is, therefore, the minimum squared distance between allowable sequence points (the sequence points obtained through coding), multiplied by the density of the allowable sequence points. Specifically, if the minimum distance and density of points in the sequence space are denoted by \(d_0\) and \(\Delta_0\), respectively, and if the minimum distance and density of points in the sequence space obtained through coding are denoted by \(d_{\text{min}}\) and \(\Delta\), respectively, then maximum-likelihood sequence detection yields a channel coding gain of

\[
G_c = \left(\frac{d_{\text{min}}^2}{d_0^2} \right) \frac{\Delta}{\Delta_0}.
\]

The second bracketed term in this expression is also referred to as the constellation expansion factor, and equals \(2^{-r}\) (per \(N\) dimensions) for a redundancy of \(r\) bits in the encoder \(E\) [13].

Some of the nominal coding gain in (8.69) is lost due to correct sequences having more than one nearest neighbor in the sequence space, which increases the possibility of incorrect sequence detection. This loss in coding gain is characterized by the error coefficient, which is tabulated for most common lattice and trellis codes in [13]. In general, the error coefficient is larger for lattice codes than for trellis codes with comparable values of \(G_c\).

Channel coding is done using set partitioning of lattices. A lattice is a discrete set of vectors in real Euclidean \(N\)-space that forms a group under ordinary vector addition, so the sum or difference of any two

\(^1\)A square constellation has 0 dB of shape gain; a circular constellation, which is the geometrical figure with the least average energy for a given area, achieves the maximum shape gain for a given \(N\) [15].

177
vectors in the lattice is also in the lattice. A sub-lattice is a subset of a lattice that is itself a lattice. The sequence space for uncoded M-QAM modulation is just the N-cube, so the minimum distance between points is no different than in the two-dimensional case. By restricting input sequences to lie on a lattice in N-space that is denser than the N-cube, we can increase d_{min} while maintaining the same density (or equivalently, the same average power) in the transmit signal constellation; hence, there is no constellation expansion. The N-cube is a lattice, however for every $N > 1$ there are denser lattices in N-dimensional space. Finding the densest lattice in N dimensions is a well-known mathematical problem, and has been solved for all N for which the decoder complexity is manageable. Once the densest lattice is known, we can form partitioning subsets, or cosets, of the lattice through translation of any sublattice. The choice of the partitioning sublattice will determine the size of the partition, i.e. the number of subsets that the subset selector in Figure 8.15 has to choose from. Data bits are then conveyed in two ways: through the sequence of cosets from which constellation points are selected, and through the points selected within each coset. The density of the lattice determines the distance between points within a coset, while the distance between subset sequences is essentially determined by the binary code properties of the encoder E, and its redundancy r. If we let d_p denote the minimum distance between points within a coset, and d_s denote the minimum distance between the coset sequences, then the minimum distance code is $d_{\text{min}} = \min(d_p, d_s)$. The effective coding gain is given by

$$G_c = 2^{-2r/N}d_{\text{min}}^2,$$

where $2^{-2r/N}$ is the constellation expansion factor (in two dimensions) from the r extra bits introduced by the binary channel encoder.

Returning to Figure 8.15, suppose that we want to send $m = n + r$ bits per dimension, so an N sequence conveys mN bits. If we use the densest lattice in N space that lies within an N sphere, where the radius of the sphere is just large enough to enclose 2^{mN} points, then we achieve a total coding gain which combines the channel gain (resulting from the lattice density and the encoder properties) with the shape gain of the N sphere over the N rectangle. Clearly, the channel coding gain is decoupled from the shape gain. An increase in signal power would allow us to use a larger N sphere, and hence transmit more uncoded bits. It is possible to generate maximum-density N-dimensional lattices for $N = 4, 8, 16,$ and 24 using a simple partition of the two-dimensional rectangular lattice combined with either conventional block or convolutional coding. Details of this type of code construction, and the corresponding decoding algorithms, can be found in [30] for both lattice and trellis codes. For these constructions, an effective coding gain of approximately 1.5, 3.0, 4.5, and 6.0 dB is obtained with lattice codes, for $N = 4, 8, 16,$ and 24, respectively. Trellis codes exhibit higher coding gains with comparable complexity.

We conclude this section with an example of coded-modulation: the $N = 8$, 3 dB gain lattice code proposed in [30]. First, the two-dimensional signal constellation is partitioned into four subsets as shown in Figure 8.16, where the subsets are represented by the points A_0, A_1, B_0, and B_1, respectively. From this subset partition, we form an 8-dimensional lattice by taking all sequences of four points in which all points are either A points or B points and moreover, within a four point sequence, the point subscripts satisfy the parity check $i_1 + i_2 + i_3 + i_4 = 0$ (so the sequence subscripts must be codewords in the $(4,3)$ parity-check code, which has a minimum Hamming distance of two). Thus, three data bits and one parity check bit are used to determine the lattice subset. The minimum distance resulting from this subset partition is four times the minimum distance of the uncoded signal constellation, yielding a 6 dB gain. However, the extra parity check bit expands the constellation by 3 dB, so the net coding gain is

2 The Cartesian product of two-dimensional rectangular lattices with points at odd integers.

3 The complexity of the maximum-likelihood decoder implemented with the Viterbi algorithm is roughly proportional to N.

178
6 − 3 = 3 dB. The remaining data bits are used to choose a point within the selected subset, so for a data rate of m bits/symbol, the four lattice subsets must each have 2^{m-1} points.\(^4\)

\[
\begin{array}{cccccccc}
\cdot & \cdot \\
\cdot & \cdot & A_0 & B_0 & A_0 & B_0 & A_0 & B_0 \\
\cdot & \cdot & B_1 & A_1 & B_1 & A_1 & B_1 & A_1 \\
\cdot & \cdot & A_0 & B_0 & A_0 & B_0 & A_0 & B_0 \\
\cdot & \cdot & B_1 & A_1 & B_1 & A_1 & B_1 & A_1 \\
\cdot & \cdot & A_0 & B_0 & A_0 & B_0 & A_0 & B_0 \\
\cdot & \cdot & B_1 & A_1 & B_1 & A_1 & B_1 & A_1 \\
\cdot & \cdot & A_0 & B_0 & A_0 & B_0 & A_0 & B_0 \\
\cdot & \cdot & B_1 & A_1 & B_1 & A_1 & B_1 & A_1 \\
\cdot & \cdot & A_0 & B_0 & A_0 & B_0 & A_0 & B_0 \\
\cdot & \cdot & B_1 & A_1 & B_1 & A_1 & B_1 & A_1 \\
\end{array}
\]

Figure 8.16: Subset Partition for an Eight-Dimensional Lattice.

Coded modulation using turbo codes has also been investigated. This work shows that turbo trellis coded modulation can come very close to the Shannon limit for nonbinary signalling.

8.7.2 Coded Modulation with Interleaving for Fading Channels

Coded modulation for fading channels also uses the coding and interleaving approach of block and convolutional codes, however the interleaver is matched to the block or convolutional encoder in coded modulation design [19, 20]. However, the minimum distance error event in a trellis code depends both on the parallel transitions and the minimum distance error event through the trellis. Thus, the dominating error event is not always obvious, which complicates code design. A good overview of trellis code design for fading channels, including the impact of interleaving and channel fade information, can be found in [19] and the references therein. There is no good rule of thumb for these code designs, and in many cases simulations must be used to evaluate performance and choose between different code designs.

8.7.3 Adaptive Coded Modulation

As discussed in Chapter 9, adaptive modulation is a powerful technique to achieve high spectral efficiency on fading channels. It turns out that additional coding gain can be achieved by superimposing trellis codes or more general coset codes on top of the adaptive modulation. Specifically, by using the subset partitioning inherent to coded modulation, trellis or lattice codes designed for AWGN channels can be superimposed directly onto the adaptive modulation with the same approximate coding gain. The basic idea of adaptive coded modulation is to exploit the separability of code and constellation design inherent to coset codes, as described in Chapter 8.7.

Coded modulation is a natural coding scheme to use with the variable-rate variable-power MQAM described in Chapter 7, since the channel coding gain is essentially independent of the modulation. We

\(^4\)This yields $m − 1$ bits/symbol, with the additional bit/symbol conveyed by the channel code.
can therefore adjust the power and rate (number of levels or signal points) in the transmit constellation relative to the instantaneous SNR without affecting the channel coding gain, as we now describe in more detail.

The coded modulation scheme is shown in Figure 8.17. The coset code design is the same as it would be for an AWGN channel, i.e., the lattice structure and conventional encoder follow the trellis or lattice coding designs outlined in Section 8.7. Let \(G_c \) denote the coding gain of the coset code, as given by (8.70). The source coding (modulation) works as follows. The signal constellation is a square lattice with an adjustable number of constellation points \(M \). Since we are using the \(N \)-cube for our signal constellation, the shape gain is zero. Therefore, we can move the constellation mapping before the point selection without changing the code performance, i.e., we project the chosen subset in \(N \) dimensional space onto a sequence of \(N/2 \) subsets in two-dimensional space, from which the MQAM signal point is selected. The size of the MQAM signal constellation from which the signal point is selected is determined by the transmit power, which is adjusted relative to the instantaneous SNR and the desired BER, as in the uncoded case above.

![Diagram of Adaptive Coded Modulation Scheme](image)

Figure 8.17: Adaptive Coded Modulation Scheme

Specifically, if the BER approximation (7.7) is adjusted for the coding gain, then for a particular SNR= \(\gamma \),

\[
BER \approx 2e^{-1.5(\gamma G_c/M-1)},
\]

where \(M \) is the size of the transmit signal constellation. As in the uncoded case, we can adjust the number of constellation points \(M \) and signal power relative to the instantaneous SNR to maintain a fixed BER:

\[
M(\gamma) = 1 + \frac{1.5\gamma G_c}{-\ln(BER/2)} \frac{P(\gamma)}{P}.
\]

The number of uncoded bits required to select the coset point is \(n(\gamma) - 2k/N = \log_2 M(\gamma) - 2(k+r)/N \). Since this value varies with time, these uncoded bits must be queued until needed, as shown in Figure 8.17.

The bit rate per transmission is \(\log_2 M(\gamma) \), and the data rate is \(\log_2 M(\gamma) - 2r/N \). Therefore, we maximize the data rate by maximizing \(E[\log_2 M] \) relative to the average power constraint. From this maximization, we obtain the optimal power control policy for this modulation scheme:

\[
\frac{P(\gamma)}{P} = \begin{cases}
\frac{1}{\gamma_0} - \frac{1}{\gamma K_c} & \gamma \geq \gamma_0/K_c \\
0 & \gamma < \gamma_0/K_c
\end{cases},
\]

where \(\gamma_0 \) is the cutoff fade depth, and \(K_c = KG_c \). This is the same as the optimal policy for the uncoded case (7.11), with \(K \) replaced by \(K_c \). Thus, the coded modulation increases the effective transmit power
by G_c, relative to the uncoded variable-rate MQAM performance. The resulting spectral efficiency is

$$\frac{R}{B} = \int_{\gamma_{K_c}}^{\infty} \log_2 \left(\frac{\gamma}{\gamma_{K_c}} \right) p(\gamma) d\gamma,$$

(8.74)

where $\gamma_{K_c} = \gamma_0 / K_c$. If the constellation expansion factor is not included in the coding gain G_c, then we must subtract $2\pi / N$ from (8.74) to get the data rate.

More details of this adaptive coded modulation scheme can be found in [31], along with plots of the spectral efficiency for adaptive trellis coded modulation of varying complexity. The results in this paper show that adaptive trellis coded modulation can achieve within 5 dB of Shannon capacity at reasonable complexity, and that the coding gains of superimposing a given trellis code onto uncoded adaptive modulation are roughly equal to the coding of the trellis code in an AWGN channel.

8.8 Unequal Error Protection Codes

A final coding technique which can improve performance on fading channels is multiresolution or unequal error protection (UEP) coding. The basic idea behind multiresolution codes requires that the uncoded bits have different priorities. Specifically, it assumes that although all bits are important, the loss of some bit types will only slightly degrade performance, while the loss of other bit types may be catastrophic to performance (for example, in many image compression schemes, low resolution bits are very important, while high resolution bits merely refine the image, and are therefore not as important to the overall image quality). With this type of coding, if the channel is not in a deep fade, both types of bits will get through, while if the channel is in a deep fade, only the important bits will get through.

Practical implementation of a multilevel code was first studied by Imai and Hirakawa [21]. Binary UEP codes were later considered both for combined speech and channel coding [22], and combined image and channel coding [23]. These implementations use traditional (block or convolutional) error-correction codes, so coding gain is directly proportional to bandwidth expansion. More recently, two bandwidth-efficient implementations for UEP have been proposed: time-multiplexing of bandwidth-efficient coded modulation [24], and coded-modulation techniques applied to both uniform and nonuniform signal constellations [25, 26]. All of these multilevel codes can be designed for either AWGN or fading channels, depending on the distance criterion of the code, as discussed above. We now briefly summarize these UEP techniques; specifically, we describe the principles behind multilevel coding and multistate decoding, and the more complex bandwidth-efficient implementations.

A block diagram of a general multilevel encoder is shown in Figure 8.18. The source encoder first divides the information sequence into M parallel bit streams of decreasing priority. The channel encoder consists of M different binary error-correcting codes C_1, \ldots, C_M with decreasing codeword distances. For AWGN channels, the binary encoder should maximize the Euclidean distance between codewords; for fading channels, the Hamming distance should be maximized [27]. The ith priority bit stream enters the ith encoder, which generates the coded bits s_i. If the 2^M points in the signal constellation are numbered from 0 to $2^M - 1$, then the point selector chooses the constellation point s corresponding to

$$s = \sum_{i=1}^{M} s_i \times 2^{i-1}.$$

(8.75)

For example, if $M = 3$ and the signal constellation is 8PSK, then the chosen signal point will have phase $2\pi s / 8$.

Optimal decoding of the multilevel code uses a maximum-likelihood decoder, which determines the input sequence that maximizes the received sequence probability. The maximum-likelihood decoder must
Figure 8.18: Multilevel Encoder

Therefore jointly decode the code sequences s_1, \ldots, s_m. Hence, if the encoder memories are of length μ_1, \ldots, μ_M, the number of states in the optimal decoder is $2^{\mu_1+\cdots+\mu_M}$. This leads to very high complexity in the optimal decoder, even if the memories of the individual encoders C_1, \ldots, C_M are small. Due to this complexity, the suboptimal technique of multistage decoding, introduced in [21], is used for most implementations. Multistage decoding is accomplished by decoding the component codes sequentially. First, the most robust code, C_1, is decoded, then C_2, and so forth. Once the code sequence corresponding to encoder C_i is estimated, it is assumed correct for code decisions on the less robust code sequences.

The binary encoders of this multilevel code require extra code bits to achieve their coding gain, thus they are not bandwidth-efficient. An alternative approach recently proposed in [25] uses time-multiplexing of the trellis codes described in Chapter 8. In this approach, different conventional coded modulation schemes, such as lattice or trellis codes, with different coding gains are used for each priority class of input data. The transmit signal constellations corresponding to each encoder may differ in size (number of signal points), but the average power of each constellation is the same. The signal points output by each of the individual encoders are then time-multiplexed together for transmission over the channel, as shown in Figure 8.19 for two different priority bit streams. Let R_i denote the bit rate of encoder C_i in this figure, for $i = 1, 2$. If T_1 equals the fraction of time that the high-priority C_1 code is transmitted, and T_2 equals the fraction of time that the C_2 code is transmitted, then the total bit rate is $(R_1T_1 + R_2T_2)/(T_1 + T_2)$, with the high-priority bits comprising $R_1T_1/(R_1T_1 + R_2T_2)$ percent of this total.

The time-multiplexed coding method yields a higher gain if the constellation maps S_1 and S_2 of Figure 8.19 are designed jointly. This revised scheme is shown in Figure 8.20 for 2 encoders, where the extension to M encoders is straightforward. Recall that in trellis coding, bits are encoded to select the lattice subset, and uncoded bits choose the constellation point within the subset. The binary encoder properties reduce the BER for the encoded bits only; the BER for the uncoded bits is determined by the separation of the constellation signal points. We can easily modify this scheme to yield two levels of coding gain, where the high-priority bits are heavily encoded and used to choose the subset of the partitioned constellation, while the low-priority bits are uncoded or lightly coded and used to select the constellation signal point.
Figure 8.19: Transceiver for Time-Multiplexed Coded Modulation

Figure 8.20: Joint Optimization of Signal Constellation
Bibliography

Chapter 9

Adaptive Modulation

9.1 Introduction

High-speed wireless data transmission requires robust and spectrally-efficient communication techniques for flat-fading channels. When the channel can be estimated and this estimate sent back to the transmitter, the transmission scheme can be adapted relative to the channel characteristics. Most modulation and coding techniques do not adapt to fading conditions. These nonadaptive methods require a fixed link margin to maintain acceptable performance when the channel quality is poor. Thus, these systems are effectively designed for the worst-case channel conditions, resulting in insufficient utilization of the full channel capacity. Adapting to the signal fading allows the channel to be used more efficiently, since power and rate can be allocated to take advantage of favorable channel conditions. In Chapter 4.3.3, the optimal adaptive transmission scheme that achieves the Shannon capacity of a fading channel was derived. In this chapter we develop practical variable-rate variable-power MQAM modulation techniques for fading channels.

Adaptive transmission, which requires accurate channel estimates at the receiver and a reliable feedback path between the receiver and transmitter, was first proposed in the late sixties [3]. Interest in these techniques was short-lived, perhaps due to hardware constraints, lack of good channel estimation techniques, and/or systems focusing on point-to-point radio links without transmitter feedback. The fact that these issues are less constraining in current systems, coupled with the growing demand for spectrally-efficient communication, has revived interest in adaptive modulation methods. The basic idea behind adaptive transmission is to maintain a constant E_b/N_0 by varying the transmitted power level [3], symbol transmission rate [4], constellation size [5, 6, 7], coding rate/scheme [8], or any combination of these parameters [9, 10, 11]. Thus, without increasing probability of error, also called the Bit Error Rate (BER), these schemes provide high average spectral efficiency by transmitting at high speeds under favorable channel conditions, and reducing throughput as the channel degrades. The performance of these schemes is further improved by combining them with space diversity [12, 13]. Adaptive techniques are also used for high-speed modems [14, 15], satellite links [16, 17, 18], and to minimize distortion or satisfy Quality-of-Service requirements in end-to-end wireless applications. [19, 20]. Our approach is novel relative to all of these adaptive techniques in that we optimize both the transmission rate and power to maximize spectral efficiency, while satisfying average power and BER constraints. Although we restrict ourselves to MQAM signal constellations, the same adaptive techniques can be applied to lattice-based constellations [21], which exhibit 1-1.5 dB of shaping gain relative to MQAM.

Cellular systems exploit the power falloff with distance of signal propagation to reuse the same frequency channel at spatially separated locations. While frequency-reuse provides more efficient use
of the limited available spectrum within a given area, it also introduces co-channel interference, which ultimately determines the data rates and corresponding BERs available to each user. Thus, although adaptive modulation techniques increase the spectral efficiency (b/s/Hz) of a single channel, these techniques may also increase co-channel interference levels in a cellular system, thereby requiring a higher reuse distance to mitigate this increased interference power. Adaptive modulation may therefore reduce the area spectral efficiency\(^1\) of a cellular system, defined as its average b/s/Hz/km\(^2\). Indeed, while we show in this chapter that channel inversion can significantly reduce the spectral efficiency of a single user relative to optimal adaptation, this inversion is necessary in CDMA cellular systems without multiuser detection to reduce the near-far effect [22, 23]. The area spectral efficiency of FDMA/TDMA cellular systems with the adaptive policies described in this chapter are analyzed in [24], where it is shown that power adaptation typically reduces area spectral efficiency, while rate adaptation improves it. We do not consider the effect of co-channel interference in our analysis below. Thus, our results apply to systems without frequency reuse, or to cellular systems where the co-channel interference is significantly mitigated through cell isolation, sectorization, or adaptive antennas.

There are several practical constraints which determine when adaptive modulation should be used. If the channel is changing faster than it can be estimated and fed back to the transmitter, adaptive techniques will perform poorly, and other means of mitigating the effects of fading should be used. In Chapter 9.6 we find that, for a target BER of \(10^{-6}\), the BER remains at its target level as long as the total delay of the channel estimator and feedback path is less than \(0.01\lambda/v\), where \(v\) is the vehicle speed and \(\lambda\) the signal wavelength. Thus, at pedestrian speeds of 3.6 Km/HR the total delay should not exceed 1 ms, and at vehicle speeds of 90 Km/HR the total delay should not exceed 40 \(\mu\)sec. The former constraint is within the capabilities of existing estimation techniques and feedback channels, while the latter constraint is more challenging. However, a higher BER target loosens the delay constraint: at \(10^{-3}\) BER a total delay constraint of less than \(0.1\lambda/v\) suffices for good performance. The effects of estimation error are also characterized in Section 7, where we find that the estimation error must be less than 1 dB to maintain the target BER. In Rayleigh fading this bound on estimation error can be achieved using the pilot-symbol assisted estimation technique described in [25] with appropriate choice of parameters.\(^2\) Finally, hardware constraints may dictate how often the transmitter can change its rate and/or power. As part of our analysis we will derive a closed-form expression for how often the transmitter must adapt its signal constellation as a function of the Doppler frequency \(f_D = v/\lambda\).

9.2 System Model

Consider a discrete-time channel with stationary and ergodic time-varying gain \(\sqrt{S[g]}\) and additive white Gaussian noise \(n[n]\). Let \(S\) denote the average transmit signal power, \(N_0/2\) denote the power spectral density of the complex noise \(n[n]\), \(B\) denote the received signal bandwidth, and \(\bar{g}\) denote the average channel gain. The received noise power is thus \(2B \times \frac{N_0}{2} = N_0B\). With appropriate scaling of \(\bar{S}\) we can assume that \(\bar{g} = 1\). For a constant transmit power \(\bar{S}\), the instantaneous received SNR is \(\gamma[i] = \bar{S}g[i]/(N_0B)\) and the average received SNR is \(\bar{\gamma} = \bar{S}/(N_0B)\). Suppose, however, that we adapt the transmit power at time \(i\) based on the channel estimate \(\hat{g}[i]\) or, equivalently, on \(\hat{\gamma}[i] = \bar{S}\hat{g}[i]/(N_0B)\). We denote the transmit power at time \(i\) with this adaptive scheme by \(S(\hat{\gamma}[i])\), and the received power at time \(i\) is then \(\gamma[i] = \frac{S(\hat{\gamma}[i])}{\bar{S}}\). Since \(g[i]\) is stationary, the distribution of \(\gamma[i]\) is independent of \(i\), and we denote this

\(^1\)Unfortunately, the area spectral efficiency is often referred to as just spectral efficiency, which causes some confusion between the two definitions. In this chapter spectral efficiency refers to the b/s/Hz of a single-user channel.

\(^2\)There will be some loss of spectral efficiency for this estimation technique since the pilot symbol rate must be subtracted from the transmitted symbol rate.
distribution by $p(\gamma)$. When the context is clear, we will omit the time reference i relative to γ and $S(\gamma)$.

The system model is illustrated in Figure 9.1. We assume that an estimate $\hat{g}[i]$ of the channel power gain $g[i]$ at time i is available to the receiver after an estimation time delay of τ_e and that this same estimate is available to the transmitter after a combined estimation and feedback path delay of $\tau = \tau_e + \tau_f$. We also assume ideal coherent phase detection. The channel gain estimation error $\varepsilon[i]$ is defined as $\varepsilon[i] = \hat{g}[i]/g[i] = \gamma[i]/\gamma[i]$. We assume that the feedback path does not introduce any errors, which can be assured by increasing its delay time and using an ARQ transmission protocol. The availability of channel information at the transmitter allows it to adapt its transmission scheme relative to the channel variation. We will initially ignore the effects of estimation error and delay, assuming $\varepsilon = 1$ and $\tau = 0$. We then relax these assumptions and determine closed-form expressions for the increase in BER resulting from these effects.

We will assume $p(\gamma)$ to be either log-normal or exponential (Rayleigh fading) in the numerical calculations below, although our formulas apply for any distribution of γ. The log-normal distribution arises from attenuation of the transmitted signal by surrounding buildings, and the exponential distribution arises from multipath [26]. Although both types of fading will typically be superimposed on the received signal, we consider the two distributions separately for the following reasons. At low speeds the log-normal shadowing is essentially constant, and the Rayleigh fading is sufficiently slow so that it can be estimated and fed back to the transmitter with an estimation error and delay that does not significantly degrade performance. At high speeds these effects may become nonnegligible. In this case, most of the Rayleigh fading can be removed with a sufficient number of diversity branches at the transmitter or receiver, in which case the adaptive modulation need only respond to log-normal channel variations.

The rate of channel variation will dictate how often the transmitter must adapt its rate and/or power, and will also impact the BER increase due to estimation error and delay. For Rayleigh fading we assume the standard Jakes model for the autocorrelation of the channel power gain over time [26]:

$$A_g(\tau) = J^2_0(2\pi v \tau / \lambda),$$

(9.1)

where v is the mobile user’s velocity and λ is the RF wavelength.

The autocorrelation function for log-normal shadowing is not well-characterized. However, measurements reported in [27] support an autoregressive model:

$$A_g(\tau) = e^{-|\tau|/X_e},$$

(9.2)

where X_e is the effective autocorrelation distance of the log-normal shadowing. This distance is on the order of 10-100 m, depending on propagation distance [28].
9.3 Variable-Rate Variable-Power MQAM

Shannon capacity places no restriction on the complexity or delay of the multiplexed transmission scheme
which achieves capacity. In fact, Shannon theory doesn’t tell us anything about how to design this
scheme. Therefore, the main emphasis of this chapter is on practical adaptive modulation methods and
their spectral efficiency relative to the theoretical capacity results obtained in Chapter 4. Specifically,
we consider a variable-rate and variable-power modulation method using MQAM signal constellations.
We will see that the same optimization of power and rate that achieves capacity (Chapter 6.3.3) can be
applied to our MQAM design. We also obtain a formula for the efficiency difference between our adaptive
MQAM technique and the fading channel capacity.

Consider a family of MQAM signal constellations with a fixed symbol time T_s, where M denotes the
number of points in each signal constellation and we assume ideal Nyquist data pulses $\text{sinc}[t/T_s]$ for
each constellation\(^3\). Let S, B, N_0, $\gamma = \frac{S}{N_0 B}$, and $\overline{\gamma} = \frac{S}{\overline{N}_0 B}$ be as given in our system model. Since each of
our MQAM constellations have Nyquist data pulses ($B = 1/T_s$), the average E_s/N_0 equals the average
SNR:

$$\frac{E_s}{N_0} = \overline{S}T_s = T_s \overline{N}_0 = \overline{\gamma}.$$ \hspace{1cm} (9.3)

The spectral efficiency of our modulation scheme equals its data rate per unit bandwidth (R/B). For
fixed M, $R = (\log_2 M)/T_s$. The spectral efficiency for fixed M is therefore $\log_2 M$, the number of bits
per symbol. This efficiency is typically parameterized by the average transmit power \overline{S} and the BER of
the modulation technique.

In [30] the BER for an AWGN channel with MQAM modulation, ideal coherent phase detection,
and SNR γ is bounded by

$$\text{BER} \leq 2e^{-1.5\gamma/(M-1)}. \hspace{1cm} (9.4)$$

A tighter bound good to within 1dB for $M \geq 4$ and $0 \leq \gamma \leq 30$dB is

$$\text{BER} \leq 2e^{-1.5\gamma/(M-1)}. \hspace{1cm} (9.5)$$

Note that these expressions are only bounds, and may differ from BER expressions found in other text-
books. We use these bounds since they are easy to invert, so we can obtain M as a function of a target
BER, as we will see shortly.

In a fading channel with nonadaptive transmission (constant transmit power and rate), the received
SNR varies with time. The BER in this case is obtained by integrating the BER in AWGN over the
fading distribution $p(\gamma)$. For BPSK ($M = 2$) in Rayleigh fading, this integration yields BER $\approx \frac{1}{15}$ at
large SNRs (6.29). Without transmitter adaptation, we therefore require $\overline{\gamma} = 24$ dB to obtain a spectral
efficiency of 1 at 10^{-3} BER. For $M \geq 4$ we can bound the average BER by integrating over (9.5):

$$\text{BER} \leq \int .2e^{-1.5\gamma/(M-1)}p(\gamma)d\gamma, \hspace{1cm} M \geq 4. \hspace{1cm} (9.6)$$

Setting $M = 4$ in (9.6) yields a required average SNR of $\overline{\gamma} = 26$ dB to obtain a spectral efficiency of 2
at 10^{-3} BER. We will see below that adaptive techniques yield much higher spectral efficiencies at these
BER and power specifications.

We now consider adapting the transmit power $S(\gamma)$ relative to γ, subject to the average power
constraint \overline{S}. The received SNR is then $\gamma S(\gamma)/\overline{S}$, and the BER bound for each value of γ becomes

$$\text{BER}(\gamma) \leq .2 \exp \left[\frac{-1.5\gamma S(\gamma)}{M-1 - S/\overline{S}}\right]. \hspace{1cm} (9.7)$$

\(^3\)Practical Nyquist filters with non-zero excess bandwidth will reduce the spectral efficiency.
We can also adjust \(M \) and \(S(\gamma) \) to maintain a fixed BER. Rearranging (9.7) yields the following maximum constellation size for a given BER:

\[
M(\gamma) = 1 + \frac{1.5\gamma}{-\ln(5\text{BER})} \frac{S(\gamma)}{S} = 1 + \gamma K \frac{S(\gamma)}{S}, \tag{9.8}
\]

where

\[
K = \frac{-1.5}{\ln(5\text{BER})} < 1. \tag{9.9}
\]

We maximize spectral efficiency by maximizing

\[
E[\log_2 M(\gamma)] = \int \log_2 \left(1 + \frac{K\gamma S(\gamma)}{S} \right) p(\gamma) d\gamma, \tag{9.10}
\]

subject to the power constraint

\[
\int S(\gamma)p(\gamma)d\gamma = S. \tag{9.11}
\]

The power control policy that maximizes (9.10) has the same form as the optimal power control policy (4.8) that achieves capacity:

\[
\frac{S(\gamma)}{S} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma K} & \gamma \geq \gamma_0/K \\ 0 & \gamma < \gamma_0/K \end{cases}, \tag{9.12}
\]

where \(\gamma_0 \) is the optimized cutoff fade depth. If we define \(\gamma_K = \gamma_0/K \) and substitute (9.12) into (9.8) and (9.10) we get that the instantaneous rate is given by \(M(\gamma) = \gamma/\gamma_K \) and the maximum spectral efficiency is given by

\[
\frac{R}{B} = \int_{\gamma_K}^{\infty} \log_2 \left(\frac{\gamma}{\gamma_K} \right) p(\gamma) d\gamma. \tag{9.13}
\]

Comparing the power adaptations (4.8) and (9.12) and the spectral efficiencies (4.10) and (9.10) we see that the power adaptation and spectral efficiency for both the optimal transmission scheme and our MQAM technique are the same, with an effective power loss of \(K \) in the latter case. In other words, there is a simple relationship between the maximum spectral efficiency of a fading channel and the spectral efficiency of our uncoded adaptive MQAM technique: uncoded MQAM has an effective power loss of \(K \) relative to the optimal transmission scheme, independent of the fading distribution. Thus, if the capacity of a fading channel is \(R \) bps/Hz at SNR \(\tau \), uncoded adaptive MQAM requires a received SNR of \(\tau/K \) to achieve the same rate. Equivalently, \(K \) is the maximum possible coding gain for our adaptive MQAM method. We discuss coding techniques for our adaptive modulation in Chapter 8.7.3. It is interesting to note that this constant gap between Shannon capacity and the spectral efficiency of MQAM has also been reported for time-invariant channels with ISI and decision-feedback equalization [32, 33].

We compute the efficiency (9.13) at BERs of \(10^{-3} \) and \(10^{-6} \) for both log-normal shadowing (relative to the average dB received power and for a standard deviation \(\sigma = 8\text{dB} \)) and Rayleigh fading in Figures 9.2 and 9.3, respectively. We also plot the capacity (6.10) in these figures for comparison. Note that the gap between (9.13) and (6.10) is the constant \(K \), which is a simple function of the BER (9.9).

We can also apply the suboptimal policies of total and truncated channel inversion to adaptive MQAM. The spectral efficiency with total channel inversion is obtained by substituting \(S(\gamma)/S = \sigma/\gamma \) in (9.8) with \(\sigma = ([1/\gamma])^{-1} \):

\[
\frac{R}{B} = \log_2 \left(1 + \frac{-1.5}{\ln(5\text{BER})[1/\gamma]} \right), \tag{9.14}
\]

\[193\]
This spectral efficiency is based on the tight bound (9.5); if \(R/B < 4 \) the loose bound (9.4) must be used and the spectral efficiency recalculated.

With truncated channel inversion the channel is only used when \(\gamma > \gamma_0 \). Thus, the spectral efficiency with truncated channel inversion is obtained by substituting (6.13) into (9.8) and multiplying by the probability that \(\gamma > \gamma_0 \). The maximum value is obtained by optimizing relative to the cutoff level \(\gamma_0 \):

\[
\frac{R}{B} = \max_{\gamma_0} \log_2 \left(1 + \frac{1.5}{\ln(5\text{BER})[1/\gamma]_{\gamma_0}} \right) p(\gamma > \gamma_0). \tag{9.15}
\]

The spectral efficiency of MQAM with these suboptimal policies, in both log-normal and Rayleigh fading, is evaluated in [34, Figures 3-4].

The spectral efficiencies (9.13), (9.14), and (9.15) place no restrictions on the constellation size; indeed, the size is not even restricted to integer values. While transmission at noninteger rates is possible, the complexity is quite high [40]. Moreover, it is difficult in practice to continually adapt the transmit power and constellation size to the channel fading, particularly in fast fading environments. Thus, we now consider restricting the constellation size to just a handful of values. This will clearly impact the spectral efficiency though, surprisingly, not by very much.
9.4 Constellation Restriction

We now restrict ourselves to MQAM constellations of size $M_0 = 0$, $M_1 = 2$, and $M_j = 2^{(j-1)}$, $j = 2, ..., N$. We use square constellations for large M due to their inherent spectral efficiency and ease of implementation [31]. We first consider the impact of this restriction on the spectral efficiency of the optimal adaptation policy. We then determine the effect on the channel inversion policies.

9.4.1 Optimal Adaptation

We now consider optimizing the variable-rate variable-power MQAM transmission scheme subject to the constellation restrictions described above. Thus, at each symbol time we transmit a symbol from a constellation in the set $\{M_j : j = 0, 1, \ldots, N\}$: the choice of constellation depends on the fade level γ over that symbol time. Choosing the M_0 constellation corresponds to no data transmission. For each value of γ, we must decide which constellation to transmit and what the associated transmit power should be. The rate at which the transmitter must change its constellation and power is analyzed below. Since the power adaptation is continuous while the constellation size is discrete, we call this the continuous-power discrete-rate adaptation scheme.

We determine the constellation size associated with each γ by discretizing the range of channel fade levels. Specifically, we divide the range of γ into $N + 1$ fading regions and associate the constellation M_j with the jth region. The data rate for γ values falling in the jth region is thus $\log_2 M_j$ bits per symbol. If the symbol time $T = 1/B$ then we get a data rate of $(1/T)\log_2 M_j = B\log_2 M_j$ bits per second.

We set the region boundaries as follows. Define

$$M(\gamma) = \frac{\gamma}{\gamma^*_K},$$

(9.16)

where $\gamma^*_K > 0$ is a parameter that will later be optimized to maximize spectral efficiency. Note that substituting (9.12) into (9.8) yields (9.16) with $\gamma^*_K = \gamma_K$. Therefore the appropriate choice of γ^*_K in (9.16) defines the optimal constellation size for each γ when there is no constellation restriction.

Assume now that γ^*_K is fixed and define $M_{N+1} = \infty$. To obtain the constellation size M_j for a fixed γ, we first compute $M(\gamma)$ from (9.16). We then find j such that $M_j \leq M(\gamma) < M_{j+1}$ and assign constellation M_j to this γ value. Thus, for a fixed γ, we transmit the largest constellation in our set $\{M_j : j = 0, \ldots, N\}$ that is smaller than $M(\gamma)$. For example, if the fade level γ satisfies $2 \leq \gamma/\gamma^*_K < 4$ we transmit the 2-QAM signal constellation. The region boundaries are located at $\gamma = \gamma^*_K M_j, j = 0, \ldots, N + 1$. Clearly, increasing the number of discrete signal constellations N yields a better approximation to the continuous adaptation (9.8), resulting in a higher spectral efficiency.

Once the regions and associated constellations are fixed we must find a power control policy that satisfies the BER requirement and the power constraint. By (9.8) we can maintain a fixed BER for the constellation $M_j > 0$ using the power control policy

$$\frac{S_j(\gamma)}{S} = \begin{cases} \frac{1}{\gamma^*_K} & M_j < \frac{\gamma}{\gamma^*_K} \leq M_{j+1} \\ 0 & M_j = 0 \end{cases}.$$

(9.17)

A fixed BER implies that the received E_s/N_0 for each constellation M_j is constant:

$$\frac{E_s(j)}{N_0} = \frac{\gamma S_j(\gamma)}{S} = \frac{M_j - 1}{K},$$

(9.18)

where $S_j(\gamma)/S$ is defined in (9.17). In Table 1 we tabulate the constellation size and power adaptation as a function of γ and γ^*_K for 5 fading regions.
Table 9.1: Rate and Power Adaptation for 5 Regions.

The spectral efficiency for this discrete-rate policy is just the sum of the data rates associated with each of the regions multiplied by the probability that γ falls in that region:

$$R \over B = \sum_{j=1}^{N} \log_2(M_j) p(M_j \leq \gamma/\gamma_{K}^* < M_{j+1}).$$

(9.19)

Since M_j is a function of γ_K^*, we can maximize (9.19) relative to γ_K^*, subject to the power constraint

$$\sum_{j=1}^{N} \int_{\gamma_{K}^*M_{j}}^{\gamma_{K}^*M_{j+1}} \frac{S_j(\gamma)}{S} p(\gamma) d\gamma = 1,$n

(9.20)

where $S_j(\gamma)/S$ is defined in (9.17). There is no closed-form solution for the optimal γ_K^*: in the calculations below it was found using numerical search techniques.

In Figures 9.4 and 9.5 we show the maximum of (9.19) versus the number of regions $(N + 1)$ for log-normal shadowing and Rayleigh fading, respectively. We assume a BER of 10^{-3} for both plots. From Figure 9.4 we see that restricting our adaptive policy to just 6 different signal constellations ($M_j = 0, 2, 4, 16, 64, 256$) results in a spectral efficiency that is within 1 dB of the efficiency obtained with continuous-rate adaptation (9.13). A similar result holds for Rayleigh fading using 5 constellations ($M_j = 0, 2, 4, 16, 64$).

![Figure 9.4: Discrete-Rate Efficiency in Log-Normal Shadowing ($\sigma = 8\text{dB}$.)](image)

We can simplify our discrete-rate policy even further by using a constant transmit power for each constellation M_j. Thus, each fading region is associated with one signal constellation and one transmit power. We call this the discrete-power discrete-rate policy. Ideally, the fixed transmit power associated with each region should be optimized to maximize spectral efficiency. However, since we do not have a
closed-form expression for the spectral efficiency of this policy, we cannot perform the optimization. We will present simulation results for this policy in Chapter 9.5 using suboptimal transmit power values. Even with this suboptimal choice, these simulations demonstrate that keeping the transmit power constant in each region results in less than 2 dBs of power loss relative to the continuous-power discrete-rate policy.

The choice of the number of regions to use in the adaptive policy will depend on how fast the channel is changing as well as on the hardware constraints, which dictate how many constellations are available to the transmitter and at what rate the transmitter can change its constellation and power. For constellation adaptation on a per-symbol basis, the number of regions must be chosen such that the channel gain stays within one region over a symbol time. However, hardware constraints may dictate that the constellation remain constant over tens or even hundreds of symbols. In addition, power-amplifier linearity requirements and out-of-band emission constraints may restrict the rate at which power can be adapted. An in-depth discussion of hardware implementation issues and a description of a VLSI prototype can be found in [35]. Hardware advances will eventually make today’s constraints obsolete. However, determining how long the channel gain remains within a particular region is of interest, since it determines the tradeoff between the number of regions and the rate of power and constellation adaptation. We now derive this value.

Let $\overline{\tau_j}$ denote the average time duration that γ stays within the jth fading region. Let $A_j = \gamma^*_K M_j$ for γ^*_K and M_j as defined above. The jth fading region is then defined as \{ $\gamma : A_j \leq \gamma < A_{j+1}$\}. We call $\overline{\tau_j}$ the jth average fade region duration (AFRD). This definition is similar to the average fade duration (AFD) (Chapter 3.2.3), except that the AFD measures the average time that γ stays below a single level, whereas we are interested in the average time that γ stays between two levels. For the worst-case region ($j = 0$) these two definitions coincide.

Determining the exact value of $\overline{\tau_j}$ requires a complex derivation based on the joint density $p(\gamma, \dot{\gamma})$, and remains an open problem. However, we can obtain a good approximation using the finite-state Markov model derived in [36]. In that paper, fading is approximated as a discrete-time Markov process with time discretized to the symbol period T_s. The underlying assumption of the model is that γ remains within one region over a symbol period and from a given region the process can only transition to the same region or to adjacent regions. These assumptions are consistent with our model, where γ stays within one region over a symbol time. The transition probabilities between regions under this assumption are given as

$$
 p_{i,j+1} = \frac{N_{j+1} T_s}{\pi_j}, \quad p_{i,j-1} = \frac{N_j T_s}{\pi_j}, \quad p_{i,j} = 1 - p_{i,j+1} - p_{i,j-1},
$$

(9.21)
where \(N_j\) is the level-crossing rate at \(A_j\) and \(\pi_j\) is the steady-state distribution corresponding to the \(j\)th region: \(\pi_j = p(A_j \leq \gamma < A_{j+1})\). Since the time in which the Markov process stays in a given state is geometrically distributed \([37, 2.66]\), \(\tau_j\) is given by

\[
\tau_j = \frac{T_s}{p_{j,j+1} + p_{j,j-1}} = \frac{\pi_j}{N_{j+1} + N_j}.
\]

(9.22)

The value of \(\tau_j\) is thus a simple function of the level crossing rate and the fading distribution. While the level crossing rate is known for Rayleigh fading \([26, \text{Section 1.3.4}]\), it cannot be obtained for log-normal shadowing since the joint distribution \(p(\gamma, \tilde{\gamma})\) for this fading type is unknown.

In Rayleigh fading the level crossing rate is given by

\[
N_j = \sqrt{\frac{2\pi A_j}{\gamma}} f_D e^{-A_j/\gamma},
\]

(9.23)

where \(f_D = v/\lambda\) is the Doppler frequency. Substituting (9.23) into (9.22) it is easily seen that \(\tau_j\) is inversely proportional to the Doppler frequency. Moreover, since \(\pi_j\) and \(A_j\) do not depend on \(f_D\), if we compute \(\tau_j\) for a given Doppler frequency \(f_D\), we can compute \(\tau_j\) corresponding to another Doppler frequency \(f_D'\) as

\[
\tau_j = \frac{f_D}{f_D'} \tau_j.
\]

(9.24)

We tabulate below the \(\tau_j\) values corresponding to five regions \((M_j = 0, 2, 4, 16, 64)\) in Rayleigh fading\(^4\) for \(f_D = 100\,\text{Hz}\) and two average power levels: \(\gamma = 10\,\text{dB} \left(\gamma_K^* = 1.22\right)\) and \(\gamma = 20\,\text{dB} \left(\gamma_K^* = 1.685\right)\). The AFRD for other Doppler frequencies is easily obtained using the table values and (9.24). This table indicates that, even at high velocities, for symbol rates of 100 Kilosymbols/sec the discrete-rate discrete-power policy will maintain the same constellation and transmit power over tens to hundreds of symbols.

<table>
<thead>
<tr>
<th>Region(j)</th>
<th>(\gamma = 10,\text{dB})</th>
<th>(\gamma = 20,\text{dB})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.23ms</td>
<td>.737ms</td>
</tr>
<tr>
<td>1</td>
<td>.830ms</td>
<td>.301ms</td>
</tr>
<tr>
<td>2</td>
<td>3.00ms</td>
<td>1.06ms</td>
</tr>
<tr>
<td>3</td>
<td>2.83ms</td>
<td>2.28ms</td>
</tr>
<tr>
<td>4</td>
<td>1.43ms</td>
<td>3.84ms</td>
</tr>
</tbody>
</table>

Table 9.2: Average Fade Region Duration \(\tau_j\) for \(f_D = 100\,\text{Hz}\).

In shadow fading we can obtain a coarse approximation for \(\tau_j\) based on the autocorrelation function (9.2). Specifically, if \(\tau_j \approx .1X_e/v\) then the correlation between fade levels separated in time by \(\tau_j\) is \(.9\). Thus, for a small number of regions it is likely that \(\gamma\) will remain within the same region over this time period.

9.4.2 Suboptimal Policies

A restriction on allowable signal constellations will also affect the total channel inversion and truncated channel inversion policies. Specifically, although the power adaptation policies remain the same, the constellation must be chosen from the signal set \(\mathcal{M} = \{0, 2, 4, 16, 64, 256\}\). For total channel inversion the spectral efficiency with this restriction is thus

\(^4\) The validity of the finite-state Markov model for Rayleigh fading channels has been confirmed in [38].
\[
\frac{R}{B} = \left[\log_2 \left(1 + \frac{-1.5}{\ln(5 \text{BER})[1/\gamma]} \right) \right]_M, \tag{9.25}
\]
where \(|x|_M\) denotes the largest number in the set \(M\) less than or equal to \(x\). The spectral efficiency with this policy will be restricted to values of \(\log_2 M, M \in M\), with discrete jumps at the \(\gamma\) values where the spectral efficiency without constellation restriction (9.14) equals \(M\). For truncated channel inversion the spectral efficiency is given by

\[
\frac{R}{B} = \max_{\gamma_0} \left[\log_2 \left(1 + \frac{-1.5}{\ln(5 \text{BER})[1/\gamma]} \right) \right] \gamma_0, \tag{9.26}
\]

9.5 Simulation Results

We now present simulation results for adaptive modulation performance. The simulations were done using COSSAP, where fixed-rate transmitter and receiver modules were used as building blocks for the variable-rate transmitter and receiver simulation. The Rayleigh and log-normal shadowing simulation modules in the COSSAP library were used [39], with velocity entered as a parameter. The velocity was chosen so that, over a symbol time \(T_s\), \(\gamma\) stays within one region with high probability. The constellation size transmitted at each symbol time was determined using the discrete-rate adaptive policy outlined in the previous section, assuming perfect instantaneous knowledge of the simulated fade level \(\gamma\) at the transmitter and receiver. The targeted BER of the adaptive policy was \(10^{-3}\). We also assumed coherent phase detection at the receiver. Gray coding was used for bit mapping to the MQAM constellations.

We expect our simulated BER to be slightly smaller than the target BER, since (9.7) is an upper bound. An exact BER expression for MQAM with two-dimensional Gray coding is [41]

\[
\text{BER}(M) = \alpha_M \text{erfc} \left(\sqrt{\beta_M} \frac{E_b}{N_0} \right) + \text{H.O.T.s}, \tag{9.27}
\]

where \(\alpha_M\) and \(\beta_M\) are constants which depend on \(M\) and the higher order terms (H.O.T.s) are negligible. Moreover, for our continuous-power discrete-rate policy, the \(E_b/N_0\) for the \(j\)th signal constellation is approximately

\[
\frac{E_b(j)}{N_0} = \frac{E_s(j)}{N_0} \frac{1}{\log_2 M_j} = \frac{M_j - 1}{K \log_2 M_j}. \tag{9.28}
\]

We obtain the exact BER for our adaptive policy by averaging over the BER (9.27) for each signal constellation:

\[
\text{BER} = \sum_{j=1}^{N} \alpha_{M_j} \text{erfc} \left(\sqrt{\beta_{M_j} \frac{M_j - 1}{K \log_2 M_j}} \right) \int_{\gamma_{K}^{M_j+1}} \gamma^p \gamma \, d\gamma. \tag{9.29}
\]

We plot (9.29) and the simulated BER in Figures 9.6 and 9.7 for log-normal shadowing and Rayleigh fading, respectively. These simulation results are slightly better than the analytical calculation of (9.29), and both are smaller than the target BER of \(10^{-3}\), for \(\gamma > 10 \text{ dB}\). The BER bound of \(10^{-3}\) breaks down at low SNRs, since (9.5) is not applicable to 2-QAM, and we must use the looser bound (9.4). Since our adaptive policy will use the 2-QAM constellation often at low SNRs, the BER will be larger than that predicted from the tight bound (9.5).

The fact that the simulated BER is less than our target at high SNRs implies that the analytical calculations in Figures 9.4 and 9.5 are pessimistic. A slightly higher efficiency could be achieved while still maintaining the target BER of \(10^{-3}\).
In Figures 9.8 and 9.9 we show the simulated spectral efficiency corresponding to this simulated BER for the continuous-power discrete-rate policy. These figures also show the simulated efficiency of the discrete-power discrete-rate policy, where the transmit power for each region was chosen to achieve the same simulated BER as the continuous-power discrete-rate policy. We see that even with this suboptimal choice of power assignment, keeping the power constant for each transmit constellation results in a power loss of just 1-2 dB relative to continuous power adaptation. For comparison, we also plot the maximum efficiency (9.13) for continuous power and rate adaptation. Both discrete-rate policies have simulated performance that is within 3 dB of this theoretical maximum.

These figures also show the spectral efficiency of fixed-rate transmission with truncated channel inversion (9.26). The efficiency of this scheme is quite close to that of the discrete-power discrete-rate policy. However, to achieve this high efficiency, the optimal γ_0 is quite large, with a corresponding outage probability $P_{out} = P(\gamma \leq \gamma_0)$ ranging from .1 to .6. Thus, this policy is similar to packet radio, with bursts of high speed data when the channel conditions are favorable. The efficiency of total channel inversion (9.25) is also shown for log-normal shadowing; this efficiency equals zero in Rayleigh fading. We also plot the spectral efficiency of nonadaptive transmission, where both the transmission rate and power are constant. The average BER in this case is obtained by integrating the probability of error
(9.27) against the fade distribution $p(\gamma)$. The spectral efficiency is obtained by determining the value of M which yields a 10^{-3} BER for the given value of γ. Nonadaptive transmission clearly suffers a large efficiency loss in exchange for its simplicity. However, if the channel varies rapidly and cannot be accurately estimated, nonadaptive transmission may be the best alternative. Similar curves are obtained for a target BER of 10^{-6}, with roughly the same spectral efficiency loss relative to a 10^{-3} BER as was exhibited in Figures 9.2 and 9.3.

9.6 Channel Estimation Error and Delay

We now relax our earlier assumptions about estimation error and delay to consider the case when the estimation error $\epsilon = \hat{\gamma}/\gamma \neq 1$ and the delay $\tau = \tau_f + \tau_e \neq 0$. We first consider the estimation error. Suppose the transmitter adapts its power and rate relative to a target BER$_0$ based on the channel estimate $\hat{\gamma}$ instead of the true value γ. From (9.7) the BER is then bounded by
\[
\text{BER}(\gamma, \hat{\gamma}) \leq .2 \exp \left[\frac{-1.5 \gamma}{M(\hat{\gamma}) - 1} \frac{S(\hat{\gamma})}{\gamma} \right] = .2[5\text{BER}_0]^{1/\epsilon},
\]

(9.30)

where the second equality is obtained by substituting the optimal rate (9.8) and power (9.12) policies. For \(\epsilon = 1 \) (9.30) reduces to the target BER0. For \(\epsilon \neq 1 \), \(\epsilon > 1 \) yields an increase in BER, and \(\epsilon < 1 \) yields a decrease in BER.

The effect of estimation error on BER is given by

\[
\text{BER} \leq \int_0^\infty \int_{\gamma_0}^\infty .2[5\text{BER}_0]^{\gamma/\gamma} p(\gamma, \hat{\gamma}) d\gamma d\hat{\gamma}.
\]

(9.31)

The joint distribution \(p(\gamma, \hat{\gamma}) \) will depend on the channel estimation technique. It has been shown recently that when the channel is estimated using pilot symbols, the joint distribution of the signal envelope and its estimate is bi-variate Rayleigh [42]. This joint distribution was then used in [42] to obtain the probability of error for nonadaptive modulation with channel estimation errors. This analysis can be extended to adaptive modulation using a similar methodology.

If the estimation error stays within some finite range then we can bound the effect of estimation error using (9.30). We plot the BER increase as a function of a constant \(\epsilon \) in Figure 9.10. This figure shows that for a target BER of \(10^{-3} \) the estimation error should be less than 1dB, and for a target BER of \(10^{-6} \) it should be less than .5dB. These values are pessimistic, since they assume a constant value of estimation error. Even so, the estimation error can be kept within this range using the pilot-symbol assisted estimation technique described in [25] with appropriate choice of parameters. When the channel is underestimated \((\epsilon < 1) \) the BER decreases but there will also be some loss in spectral efficiency, since the mean of the channel estimate \(\hat{\gamma} \) will differ from the true mean \(\gamma \). The effect of this average power estimation error is characterized in [44].

![Figure 9.10: Effect of Estimation Error on BER.](image)

Suppose now that the channel is estimated perfectly \((\epsilon = 1) \) but the delay \(\tau \) of the estimation and feedback path is nonzero. Thus, at time \(t \) the transmitter will use the delayed version of the channel estimate \(\hat{\gamma}(t) = \gamma(t - \tau) \) to adjust its power and rate. The resulting increase in BER is obtained in the same manner as (9.30),

\[
\text{BER}(\gamma(t), \hat{\gamma}(t)) \leq .2 \exp \left[\frac{-1.5 \gamma(t)}{M(\hat{\gamma}(t)) - 1} \frac{S(\hat{\gamma}(t))}{\gamma(t)} \right] = .2[5\text{BER}_0]^{\gamma(t)/\gamma(t-\tau)}.
\]

(9.32)
Define \(\xi(t, \tau) = \gamma(t)/\gamma(t - \tau) \). Since \(\gamma(t) \) is stationary and ergodic, the distribution of \(\xi(t, \tau) \) conditioned on \(\gamma(t) \) depends only on \(\tau \) and the value of \(\gamma = \gamma(t) \). We denote this distribution by \(p_r(\xi|\gamma) \). The average BER is obtained by integrating over \(\xi \) and \(\gamma \). Specifically, it is shown in [45] that

\[
\text{BER}(\tau) = \int_{\gamma_K}^{\infty} \int_0^\infty 0.2[5\text{BER}_0]^5 p_r(\xi|\gamma) d\xi p(\gamma) d\gamma, \tag{9.33}
\]

where \(\gamma_K \) is the cutoff level of the optimal policy and \(p(\gamma) \) is the fading distribution. The distribution \(p_r(\xi|\gamma) \) will depend on the autocorrelation of the fading process. A closed-form expression for \(p_r(\xi|\gamma) \) in Nakagami fading (of which Rayleigh fading is a special case), based on the autocorrelation function \((9.1) \), is derived in [45]. Using this distribution in (9.33) we obtain the average BER in Rayleigh fading as a function of the delay parameter \(\tau \). A plot of (9.33) versus the normalized time delay \(\tau f_D \) is shown in Figure 9.11. From this figure we see that the total estimation and feedback path delay must be kept to within \(.001/f_D \) to keep the BER near its desired target.

9.7 Coding Issues and Capacity Revisited

A convolutional or block code can be applied to the uncoded bit stream before modulation to reduce the BER. If adaptive modulation is applied to these coded bits, they will not suffer burst errors typically exhibited on fading channels. Since the adaptive modulation keeps the BER constant under all fading conditions by adjusting the transmit power and rate, the probability of error in a deep fade is the same as with little or no fading, thereby eliminating error bursts and the need for an interleaver. Standard decoding algorithms can be applied to the demodulated bits, although some buffering may be required. Unfortunately, block and convolutional codes are not spectrally-efficient, and would therefore reduce some of the efficiency gains of the variable-rate scheme. A more effective coding scheme is to superimpose a trellis code on top of the adaptive modulation. This superimposed coding technique is investigated in Chapter 9.8, where we find that it is difficult to obtain more than 4 dB of coding gain using a trellis code of reasonable complexity. Thus, the constant gap (9.9) between the spectral efficiency of adaptive modulation and Shannon capacity, exhibited in Figures 9.2 and 9.3, cannot be fully closed. This discrepancy between Shannon capacity and achievable rates arises from the lack of complexity and implementation constraints inherent to Shannon theory. However, the derivation and general form of the optimal power and rate adaptation for our MQAM scheme were identical to that of the Shannon
capacity analysis. Thus, although we cannot reach the Shannon limit, the intuition and general strategy of optimal adaptation in a Shannon sense was a useful guide in our adaptive modulation design.
Bibliography

Chapter 10

Multiple Antenna Systems

Multiple antennas at the transmitter and/or receiver of a mobile system can increase data rates and performance (multiple input multiple output systems) or reduce ISI and interference from other users (smart antennas). In this chapter we treat both of these techniques and discuss the performance improvement that can be achieved via each technique.

10.1 Multiple Input Multiple Output (MIMO) Systems

MIMO systems are defined as point-to-point communication links with multiple antennas at both the transmitter and receiver. The use of multiple antennas at both transmitter and receiver clearly provide enhanced performance over diversity systems where either the transmitter or receiver, but not both, have multiple antennas. In particular, recent research has shown that MIMO systems can significantly increase the data rates of wireless systems without increasing transmit power or bandwidth. The cost of this increased rate is the added cost of deploying multiple antennas, the space requirements of these extra antennas (especially on small handheld units), and the added complexity required for multi-dimensional signal processing. Recent work in MIMO systems includes capacity of these systems under different assumptions about channel knowledge, optimal coding and decoding for these systems, and transmission strategies for uncoded systems.

10.1.1 The Narrowband Multiple Antenna System Model

A narrowband (flat-fading) point to point communication system employing n transmit and m receive antennas is shown in Figure 10.1.

This system can be represented by the following discrete time model:

$$
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_m
\end{bmatrix}
=
\begin{bmatrix}
 h_{11} & \cdots & h_{1n} \\
 \vdots & \ddots & \vdots \\
 h_{m1} & \cdots & h_{mn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
+
\begin{bmatrix}
 N_1 \\
 \vdots \\
 N_m
\end{bmatrix}
$$

or simply as $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{N}$. Here \mathbf{x} represents the n-dimensional transmitted symbol, \mathbf{N} is the m-dimensional additive white Gaussian noise (AWGN) vector, and the channel matrix \mathbf{H} consists of zero mean (Rayleigh Fading) complex circular Gaussian random variables h_{ij} representing the channel gain from transmit antenna j to receive antenna i. Without loss of generality we normalize the noise so that the noise covariance matrix is an identity matrix. Note that although the dependence on time is
suppressed here, \bar{x}, \bar{y}, \bar{N} and H are all stochastic processes. We assume that the receiver is able to estimate the channel state H perfectly. So at each instant H is known at the receiver.

The transmit power constraint is given as

$$\sum_{i=1}^{n} E[x_i x_i^*] = P,$$

or, equivalently, as

$$\text{trace}(E[\bar{X} \bar{X}^\dagger]) = P.$$

10.1.2 Transmit Precoding and Receiver Shaping

In general an R symbols/s input data stream can be split into r parallel, independent data streams, producing r-tuples \bar{x} at a rate R/r symbols/s. The actual input to the antennas \bar{x} is generated through a linear transformation on \bar{x} as

$$\bar{x} = M \bar{x},$$

where M is an $n \times r$ fixed matrix. This operation is sometimes called transmit precoding. A similar operation, called receiver shaping, can be performed at the receiver by multiplying the channel output with a $r \times n$ matrix F, as shown in Figure 10.2.

![Figure 10.2: Transmit Precoding and Receiver Shaping.](image)

The relevance of these operations will become obvious in the next section. The overall system can be described as follows:

$$\bar{y} = F \bar{y} = FH \bar{x} + FN = FH M \bar{x} + FN$$

210
Note that the rank of the input covariance matrix $Q = E[xx^\dagger]$ is equal to r, the number of independent streams being simultaneously transmitted. For example if $\bar{x} = \bar{M}x$ where \bar{M} is a constant vector, the input covariance matrix $Q = E[xx^\dagger]\bar{M}\bar{M}^\dagger$ has unit rank.

Optimal decoding of the received signal requires maximum likelihood demodulation. However, if the modulated symbols are chosen from an alphabet of size $|\mathcal{X}|$, then ML demodulation requires an exhaustive search over $|\mathcal{X}|^r$ possibilities for the input r-tuple. In general (for a non-trivial H), when the transmitter does not know H this complexity cannot be reduced further. So the optimal decoding complexity without the channel state information at the transmitter (CSIT) is exponential in the rank of the input covariance matrix, which is the same as the number of independent streams being transmitted simultaneously. This decoding complexity is typically prohibitive for even small numbers of antennas. However, decoding complexity is significantly reduced if the channel can be measured at the receiver and fed back to the transmitter, as we see in the next section.

10.1.3 Parallel Decomposition of the MIMO Channel

Let us consider the case of perfect Channel State Information at the Transmitter (CSIT). In other words, both the transmitter and the receiver know H at each instant. Further let the instantaneous channel matrix have a singular value decomposition (SVD)

$$H = U\Lambda V,$$

where U and V are unitary matrices (i.e. $UU^\dagger = I_n$ and $VV^\dagger = I_m$) and Λ is the diagonal matrix of singular values of H. Now suppose the transmitter chooses $M = V^\dagger$ and the receiver chooses $F = U^\dagger$.

The Multiple Input Multiple Output (MIMO) channel is then transformed into r ($\leq \min(m, n)$) parallel non-interfering Single Input Single Output (SISO) channels:

$$\bar{y} = U^\dagger U\Lambda VV^\dagger \bar{x} + U^\dagger \bar{N}$$

$$= \Lambda \bar{x} + \bar{N},$$

where $\bar{N} = +U^\dagger \bar{N}$. This parallel decomposition is shown in Figure 10.3.

![Parallel Decomposition of the MIMO Channel](Image)

Figure 10.3: Parallel Decomposition of the MIMO Channel.

Since the SISO channels do not interfere the optimal (maximum likelihood) demodulation complexity is now only $r|\mathcal{X}|$ instead of $|\mathcal{X}|^r$. Note that multiplication by a unitary matrix does not change the distribution of white Gaussian noise, i.e. \bar{N} and \bar{N} are identically distributed.
10.1.4 MIMO Channel Capacity

The MIMO decomposition described above allows a simple characterization of the MIMO channel capacity when both transmitter and receiver have perfect knowledge of the channel matrix H. The capacity formula is [45]:

$$C = \max_{Q : \text{Tr}(Q) \leq P} \log |I + HQH^\dagger|,$$

(10.2)

where the maximum is taken over all matrices Q that satisfy the average power constraint.

By substituting the matrix SVD (10.1) into (10.2) and using properties of unitary matrices yields

$$C = \max_{\{P_i\} : \sum_i P_i \leq P} \sum_i B \log \left(1 + \frac{\lambda_i P_i}{N_0 B}\right),$$

(10.3)

which is similar to the capacity formula in flat fading (4.7) or in frequency-selective fading with constant channel gains (4.16). We therefore get a similar water-filling power allocation for the MIMO channel with the channel gain given by the eigenvalues:

$$P_i = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma_i} & \gamma_i \geq \gamma_0 \\ 0 & \gamma_i < \gamma_0 \end{cases}$$

(10.4)

for some cutoff value γ_0, where $\gamma_i = \frac{\lambda_i P}{(N_0 B)}$. The resulting capacity is then

$$C = \sum_{i=1(\gamma_i \geq \gamma_0)} B \log(\frac{\gamma_i}{\gamma_0}).$$

(10.5)

10.1.5 Beamforming

In this section we consider the case when the transmitter does not know the instantaneous channel. It is no longer possible to transform the MIMO channel into non-interfering SISO channels. Since the decoding complexity is exponential in r, we can keep the complexity low by keeping r small. Of particular interest is the case where $r = 1$. A transmit strategy where the input covariance matrix has unit rank is called beamforming. This corresponds to the precoding matrix being just a column vector $M = \bar{c}$, the beamforming vector, as shown in Figure 10.4.

Spatial matched filtering yields a single SISO AWGN channel as follows.

$$\tilde{y} = \frac{\bar{c}^\dagger H^\dagger}{\|\bar{c}^\dagger H^\dagger\|} y$$

$$= \frac{\bar{c}^\dagger H^\dagger}{\|\bar{c}^\dagger H^\dagger\|} H\bar{c} x + \frac{\bar{c}^\dagger H^\dagger}{\|\bar{c}^\dagger H^\dagger\|} \tilde{N}$$

$$= \|H\bar{c}|x + \tilde{N}$$

where \tilde{N} is zero-mean, unit-variance AWGN.

The optimal demodulation complexity with beamforming is of the order of $|\mathcal{X}|$, the size of the modulation symbol alphabet. Recall that \bar{c} does not change with time. For a given choice of \bar{c} and a given channel matrix H the SNR becomes

$$\text{SNR} = \bar{c}^\dagger H^\dagger H\bar{c}\mathbb{E}[xx^*]$$

Define the optimal choice of \bar{c} as one that maximizes the average SNR (averaged over the distribution of H). Note that optimality can also be defined so that the information theoretic capacity of this fading channel is maximized. However, for now, we are interested in uncoded systems and therefore we choose the average SNR as the optimality criterion.
Solving for the optimal beamforming vector

We wish to choose the beamforming vector \(\mathbf{\bar{c}} \) to maximize the average SNR given by

\[
E[\text{SNR}] = P \mathbf{\bar{c}}^H E[H^H H] \mathbf{\bar{c}}
\]

subject to

\[
\mathbf{\bar{c}}^H \mathbf{\bar{c}} = 1.
\]

We need this constraint in order to satisfy the transmit power constraint. But the solution to this optimization problem is simply the unit norm principal eigenvector (the eigenvector corresponding to the maximum eigenvalue) of the positive definite matrix \(E[H^H H] \).

I.i.d. Fading

For i.i.d. fades, i.e. when the channel fades between any transmit-receive antenna pair are independent and identically distributed, \(E[H^H H] \) is a multiple of the identity matrix. Thus without loss of generality, we could choose \(\mathbf{\bar{c}} = [1, 0, 0, \cdots, 0]^T \). So for i.i.d. fades there is no gain from using multiple transmit antennas. However the magnitude of the average received SNR is directly proportional to the number of receive antennas. Hence multiple receive antennas improve average received SNR with i.i.d. fading.

Independent Fading

Each row of the channel matrix \(H \) is an \(n \)-dimensional random vector. Let the covariance matrix for the \(i^{th} \) row be denoted by \(K_i \). For independent fades between all transmit-receive antenna pairs, the \(K_i \) are all diagonal matrices. \(E[H^H H] = \sum_{i=1}^{m} K_i \) is also a diagonal matrix. Again the principal eigenvector is \(\mathbf{\bar{c}} = [1, 0, 0, \cdots, 0, 1, 0, \cdots, 0]^T \). This again corresponds to using just one transmit antenna alone. It can easily be verified that the transmit antenna is the one that has the highest sum of average channel power gains to all the receive antennas. Again, multiple receive antennas improve the received SNR.
Correlated Fading

In general, for correlated fading, the principal eigenvector of $\mathbb{E}[H^H H]$ may use all transmit antennas. It is easy to verify this by constructing an example. We leave this as an exercise to the reader. So for correlated fading, one does gain from using multiple transmit antennas as well as multiple receive antennas.

10.2 Space-time codes

The key result discussed in the previous subsection motivates the study of channel codes, called space-time codes to pursue the very high throughput predicted by information theory. As we saw earlier, if the transmitter knows the channel it is possible to transform it into several parallel non-interfering SISO channels and the codec technology for SISO channels is well established. However if the transmitter does not know the instantaneous channel, inherently multi-dimensional codes are required. Codewords are now long matrices instead of vectors. The optimal decoding complexity of these codewords is exponential in the number of antennas. Designing these codewords itself is a complex problem and represents a vast area of research in itself. Some of the approaches explored include treating the transmission from each antenna as an independent user using conventional scalar codes in conjunction with multiuser detection techniques at the receiver (layered space time codes). However most of these suboptimal approaches suffer significant performance penalties.

10.3 Smart Antennas

Smart antennas generally consist of an antenna array combined with signal processing in both space and time. The spatial processing introduces a new degree of freedom in the system design with enormous potential to improve performance, including range extension, capacity enhancement, higher data rates, and better BER performance [53].

The main impediments to high-performance wireless communications are the interference from other users (cochannel interference) and the intersymbol interference (ISI) and signal fading caused by multipath. The cochannel interference limits the system capacity, defined as the number of users which can be serviced by the system. However, since interference typically arrives at the receiver from different directions, smart antennas can exploit these differences to reduce cochannel interference, thereby increasing system capacity. The reflected multipath components of the transmitted signal also arrive at the receiver from different directions, and spatial processing can be used to attenuate the multipath, thereby reducing ISI and flat-fading. Since data rate and BER are degraded by these multipath effects, reduction in multipath through spatial processing can lead to higher data rates and better BER performance.

The complexity of spatial domain processing along with the required real estate of an antenna array make the use of smart antennas in small, lightweight, low-power handheld devices unlikely in next-generation systems. However the base stations for these systems can use antenna arrays with space-time processing at the transmitter to reduce cochannel interference and multipath, providing similar performance advantages as smart antennas in the receiver. An excellent overview of smart antennas can be found in [53].
Appendix A
Derivations of the Alternate Representations of the Gaussian Q-function and its Square

A byproduct of Craig’s work on the probability of error for two-dimensional signal constellations [19] was the alternate representation of the Gaussian Q-function given in (7.31). An extension of this representation for the square of the Gaussian Q-function (7.58) was obtained by Simon and Divsalar [40]. In this appendix we present another simple method of proving the alternate representations of the Gaussian Q-function and its square.

A-1 Proof of Eqn. (7.31)

The proposed proof is an extension of the classical method to evaluate the Laplace-Gauss integral [23, Eqn. (3.321.3)]:

\[J(a) \triangleq \int_{0}^{\infty} e^{-\frac{x^2}{2}} \, dx = \frac{\sqrt{\pi}}{2} \, a; \quad a > 0. \]

Let us consider the double integral

\[\int_{0}^{\infty} \int_{x}^{\infty} e^{-\frac{u^2 + v^2}{2}} \, du \, dv; \quad x \geq 0. \]

Because of separability (10.7) can be rewritten as

\[\int_{0}^{\infty} e^{-u^2/2} du \int_{x}^{\infty} e^{-v^2/2} dv = \pi \, Q(x), \]

where we see that each integral in the LHS of (10.8) is a well-defined function. Further, transformation to polar coordinates \(u = r \cos \phi \) and \(v = r \sin \phi \) (\(du \, dv = rdr \, d\phi \)) may be carried out in (10.7) giving

\[\int_{0}^{\infty} \int_{x}^{\infty} e^{-\frac{u^2 + v^2}{2}} \, du \, dv = \int_{0}^{\pi/2} \int_{x/sin \phi}^{\infty} e^{-r^2/2} rdr \, d\phi \]

\[= \int_{0}^{\pi/2} \exp \left(-\frac{x^2}{2 \sin^2 \phi} \right) \, d\phi. \]

Equating the RHS of (10.8) and (10.9) we obtain an alternate proof of the desired result (7.31). Note that another purely algebraic proof of the result (7.31) which can be implied from the work of Pawula et al. [21] is given in detail in [41, Appendix 4A].

A-2 Proof of Eqn. (7.58)

The proof presented in Appendix A-1 can be easily extended to arrive at the alternate representation of \(Q^2(\cdot) \) given in (7.58). Let us now consider the following double integral

\[\int_{x}^{\infty} \int_{x}^{\infty} e^{-\frac{u^2 + v^2}{2}} \, du \, dv; \quad x \geq 0. \]

215
Again because of separability, (10.10) can be rewritten as

$$
\int_{x=0}^{\infty} e^{-u^2/2} \, du \int_{x=0}^{\infty} e^{-v^2/2} \, dv = 2 \pi Q^2(x),
$$

(10.11)

where each integral in the LHS of (10.11) is the Gaussian Q-function multiplied by $\sqrt{2\pi}$. The transformation to polar coordinates $u = r \cos \phi$ and $v = r \sin \phi$ ($du \, dv = rdr \, d\phi$) is carried out in (10.10) and by symmetry the rectangular region of integration is divided into two equal triangular parts giving

$$
\int_{x=0}^{\infty} \int_{x=0}^{\infty} e^{-u^2/2 - v^2/2} \, du \, dv = 2 \int_{0}^{\pi/2} \int_{x=0}^{\infty} e^{-r^2/2} r \, r \, dr \, d\phi
$$

$$
= 2 \int_{0}^{\pi/2} \exp \left(-\frac{x^2}{2\sin^2 \phi} \right) \, d\phi.
$$

(10.12)

Equating (10.11) and (10.12) we obtain an alternate proof of the Simon-Divsalar result (7.58).

Appendix B

Closed-Form Expressions for $J_0^{\pi/2} \left(\frac{\sin^2 \phi}{\sin^2 \phi + c} \right)^m \, d\phi$

The alternate representation of the Gaussian Q-function can also be used to find closed-form expressions for integrals not tabulated in classical table of integrals such as [22, 23]. As an example we evaluate in this appendix the integral $I_m(c)$ defined by

$$
I_m(c) = \int_{0}^{\pi/2} \left(\frac{\sin^2 \phi}{\sin^2 \phi + c} \right)^m \, d\phi.
$$

(10.13)

To do so consider first the integral $J_m(a,b)$ defined by

$$
J_m(a,b) \triangleq \frac{a^m}{\Gamma(m)} \int_{0}^{+\infty} e^{-at} t^{m-1} Q(\sqrt{bt}) \, dt, \quad m \geq 0.
$$

(10.14)

This integral (10.14) has a known closed-form expression. When m is a positive real number the integral $J_m(a,b)$ is given by [54, Eqn. (A8)]

$$
J_m(a,b) \triangleq J_m(c) = \frac{\sqrt{c/\pi}}{2(1+c)^{m+1/2}} \frac{\Gamma(m+1/2)}{\Gamma(m+1)} \frac{1}{2} \, \, _2F_1 \left(1, m+1/2; m+1; \frac{1}{1+c} \right),
$$

(10.15)

where $c = b/(2a)$ and $_2F_1(\cdot, \cdot; \cdot)$ denotes the hypergeometric series (known also as the Gauss hypergeometric function). When m is a positive integer, the integral $J_m(a,b)$ reduces to [24, Eqn. (7.4.15)], [54, Eqn. (A13)]

$$
J_m(a,b) \triangleq J_m(c) = [P(c)]^m \sum_{k=0}^{m-1} \binom{m-1+k}{k} [1 - P(c)]^k,
$$

(10.16)

where

$$
P(x) = \frac{1}{2} \left(1 - \sqrt{\frac{x}{1+x}} \right); \quad x \geq 0.
$$

(10.17)
Using the alternate representation of the Gaussian Q-function (7.31) in (10.15), we obtain
\[J_m(a, b) = \frac{a^m}{\Gamma(m)} \int_0^\infty e^{-at} t^{m-1} \left(\frac{1}{\pi} \int_0^{\pi/2} \exp \left(-\frac{b \phi}{2 \sin^2 \phi} \right) d\phi \right) dt. \] (10.18)

Interchanging the order of integration in (10.18), then using (7.43), gives
\[J_m(a, b) \triangleq J_m(c) = \frac{1}{\pi} \int_0^{\pi/2} \left(\frac{\sin^2 \phi}{\sin^2 \phi + c} \right)^m d\phi = \frac{1}{\pi} I_m(c), \] (10.19)

which is the desired closed-form expression for \(I_m(c) \). A similar equivalence can be made between a result derived by Chennakeshu and Anderson [32] and the integrals \(\int_0^{(M-1)} \pi^3/M \left(\frac{\sin^2 \phi}{\sin^2 \phi + c} \right)^m d\phi \) and \(\int_0^{\pi/M} \left(\frac{\sin^2 \phi}{\sin^2 \phi + c} \right)^m d\phi \). Full details on these equivalences can be found in [41, Appendix 5A]. The reason for mentioning these equivalences and the resulting closed-form expressions is that they can be used, for example, to simplify calculations involving the performance BPSK and M-PSK with selection diversity over correlated Nakagami-\(m \) fading channels [25].

Appendix C

Key Result on Multiple Antenna System Capacity

While the idea of using multiple antennas at either the transmitter or the receiver to achieve diversity gains or directional transmission has been around for a long time, the recent surge of interest in dual-antenna-array systems (systems using multiple antennas at both the transmitter and receiver) is mostly due to the following result by Foschini and Gans. They show that with \(n \) transmit and \(n \) receive antennas and i.i.d. fades at different antenna elements, if the receiver has a perfect estimate of the channel the mutual information grows linearly with \(n \) for a given fixed average transmitter power and bandwidth. We provide some insight into the mathematical basis of this result.

Since the transmitter does not know the channel, we assume that equal power is transmitted from each transmit antenna. The mutual information of the \(n \)-transmit, \(n \)-receive antenna system with equal power allocation is:

\[I_n = \log \det [I_{n \times n} + \frac{P}{n} HH^\dagger], \]

where the total transmit power is \(P \). If we denote the eigenvalues of \(HH^\dagger \) as \(\lambda_i \), \(1 \leq i \leq n \) we can express this as:

\[I_n = \sum_{i=1}^n \log (1 + \frac{P}{n} \lambda_i). \]

Now comes the really interesting result from theory of large random matrices that says that the eigenvalues of the random matrix \(HH^\dagger \) grow linearly in \(n \), asymptotically as \(n \to \infty \). This is true for any distribution of the entries \(H_{ij} \), as long as the entries are i.i.d. with unit variance. Even more interestingly if \(\lambda_{\max} \) is the largest eigenvalue of \(HH^\dagger \), then the following statements are true with probability one,

\[\lim_{n \to \infty} \frac{\lambda_{\max}}{n} = 4, \]

217
and the random empirical distribution of the scaled eigenvalues \(\frac{\lambda_i}{n} \) converges to the following deterministic density:

\[
g(\lambda) = \frac{1}{\pi} \sqrt{1 - \frac{\lambda}{4}} \quad \text{for} \quad 0 \leq \lambda \leq 4 \quad \text{and} \quad 0 \quad \text{otherwise}.
\]

The asymptotic behavior of the mutual information \(I_n \) follows directly from this result:

\[
\frac{I_n}{n} = \frac{1}{n} \sum_{i=1}^{n} \log(1 + P \frac{\lambda_i}{n}) \to \int_0^4 \log(1 + P\lambda)g(\lambda)d\lambda.
\]

Thus the mutual information scales linearly with \(n \). Beyond its theoretical beauty this result is exciting since the linear growth predicted by the asymptotic analysis is observed even for reasonably small number of antennas. Also it was shown recently that even for correlated fades between antenna elements the capacity growth rate is still linear in \(n \), albeit smaller than under independent fading.

Recent work in [46, 47, 48] indicates that substantial capacity improvements can be made on MIMO systems even with just channel correlation information available at the transmitter (this is not true for SISO systems). Moreover, results in [48] indicate that in some scenarios a beamforming transmission strategy achieves close to channel capacity. This is interesting since beamforming corresponds to scalar coding with linear preprocessing at the transmit antenna array. Thus, the complexity involved is only a fraction of the vector coding complexity for typical array sizes. These results are quite new and have not yet been translated to practical transmission strategies for MIMO systems. However, these results suggest that the capacity enhancement promised by MIMO systems can be achieved in real systems with techniques of reasonable complexity. Practical transmission strategies for MIMO channels generally fall into two categories: space-time coding and space-time signal processing. In space-time coding the codes are designed to take advantage of the extra degrees of freedom in the space domain [49, 50]. Space-time processing focuses on estimation, equalization, and filtering techniques to accurately estimate a signal transmitted over a MIMO channel [51, 52].
Bibliography

Chapter 11

Equalization

We have seen in Chapter 5 that delay spread causes intersymbol interference (ISI), which in turn produces an irreducible error floor in most digital modulation techniques. There are several techniques we can use as countermeasures to delay spread. These techniques fall in two broad categories: signal processing and antenna solutions. In a broad sense, equalization defines any signal processing technique used at the receiver to alleviate the ISI problem caused by delay spread. Signal processing can also be used at the transmitter to make the signal less susceptible to delay spread: spread spectrum and multichannel modulation fall in this category of transmitter signal processing techniques. In this chapter we focus on equalization. Multichannel modulation and spread spectrum are the topics of Chapters 11 and 12, respectively. Antenna solutions can also be used to change the propagation environment such that delay spread is reduced or eliminated: techniques that fall in this category include distributed antennas, directive antennas, and adaptive antennas.

An irreducible error floor arises when the channel symbol time T_s is not much larger than the average or rms delay spread (μ_{T_m} or σ_{T_m}). For example, cordless phones typically operate indoors, where the delay spread is small. Since voice is also a relative low-rate application, equalization is generally not used in cordless phones. However, in digital cellular systems which operate outdoors, $\sigma_{T_m} \approx T_s$, so equalization is typically used. Clearly higher data rate applications are even more sensitive to delay spread, and generally require high-performance equalizers. In fact, mitigating the impact of delay spread is the most challenging hurdle for high-speed wireless data systems.

The goal of equalization is to mitigate the effects of ISI. However, this goal must be balanced so that in the process of removing ISI, the noise power in the received signal is not enhanced. A simple example, shown in Figure 11.1, illustrates the pitfalls of removing ISI without considering this effect on noise. Consider a signal $s(t)$ that is passed through a channel with frequency response $H(f)$. At the receiver front end white Gaussian noise $n(t)$ is added to the signal, so the signal input to the receiver is $W(f) = S(f)H(f) + N(f)$, where $N(f)$ has power spectral density N_0. If the bandwidth of $s(t)$ is B then the noise power within the signal bandwidth of interest is N_0B. Suppose we wish to equalize the received signal so as to completely remove the ISI introduced by the channel. This is easily done by introducing an analog equalizer in the receiver defined by

$$H_{eq}(f) = 1/H(f).$$ \hspace{1cm} (11.1)

The receiver signal $W(f)$ after passing through this equalizer becomes $[S(f)H(f) + N(f)]H_{eq}(f) = S(f) + N'(f)$, where $N'(f)$ is colored Gaussian noise with power spectral density $N_0/|H(f)|^2$. Thus, all ISI has been removed from the transmitted signal $S(f)$.

However, if $H(f)$ has a spectral null ($H(f_0) = 0$ for some f_0) at any frequency within the bandwidth
of \(s(t) \), then the power of the noise \(N'(f) \) is infinite. Even without a spectral null, if some frequencies in \(H(f) \) are greatly attenuated, the equalizer \(H_{eq}(f) = 1/H(f) \) will greatly enhance the noise power at those frequencies. In this case even though the ISI effects are removed, the equalized system will perform poorly due to its greatly reduced SNR. Thus, the true goal of equalization is to balance mitigation of the effects of ISI with maximizing the SNR of the post-equalization signal. We will discuss different approaches to achieve this balance in more detail below.

For an equalizer to mitigate the ISI introduced by the channel, it must have an estimate of the channel impulse or frequency response. Since the wireless channel varies over time, the equalizer must learn the frequency response of the channel (training) and then update its estimate of the frequency response as the channel changes (tracking). The process of equalizer training and tracking is often referred to as adaptive equalization, since the equalizer adapts to the changing channel. In general, the training is done by sending a fixed-length known bit sequence over the channel. The equalizer at the receiver uses the known training sequence to adapt its filter coefficients to match the channel frequency response. Specifically, the equalizer filter coefficients are updated to minimize the error between the actual channel output and the channel output resulting from the known training sequence transmitted through the estimate of the channel frequency response. The training process assumes that the channel is relatively constant over the length of the training sequence, otherwise equalization should not be used, since the channel cannot be estimated properly. After training, the equalizer coefficients are matched to the channel, and data can be transmitted. During transmission of user data, an adaptive algorithm is used on the received data to continually update the equalizer coefficients.

If the channel changes relatively slowly, adaptive algorithms are usually sufficient to track the channel changes. However, if the channel is changing quickly, the training sequence may be transmitted periodically to insure that the equalizer coefficients do not drift significantly from their optimal values. It is clearly desirable to avoid periodic retraining, since no useful data is sent during the training interval. When periodic retraining is necessary, the length of the training sequence determines how much bandwidth is wasted on training. The length of the training sequence depends on the equalizer structure and its tap update algorithm, as well as the channel delay spread and coherence time. The convergence rate of several common equalizer algorithms are given below.

An equalizer can be implemented at baseband, RF, or IF. Most equalizers are implemented at baseband using DSP, since such filters are easily tuneable and cheap to implement.

11.1 Equalizer Types

Equalization techniques fall into two broad categories: linear and nonlinear. The linear techniques are generally the simplest to implement and to understand conceptually. However, linear equalization techniques typically suffer from noise enhancement on frequency-selective fading channels, and are therefore not used in most wireless applications. Among nonlinear equalization techniques, decision-feedback equal-
Equalizers is the most common, since it is fairly simple to implement and does not suffer from noise enhancement. However, on channels with low SNR, the DFE suffers from error propagation when bits are decoded in error, leading to poor performance. The optimal equalization technique to use is maximum likelihood sequence estimation (MLSE). Unfortunately, the complexity of this technique grows exponentially with memory length, and is therefore impractical on most channels of interest. However, the performance of the MLSE is often used as an upper bound on performance for other equalization techniques. Figure 11.2 summarizes the different equalizer types, along with their corresponding structures and tap updating algorithms, which are discussed in more detail in [1].

Equalizers can also be categorized as symbol-by-symbol (SBS) or sequence estimators (SE). SBS equalizers remove ISI from each symbol and then detect each symbol individually. All linear equalizers in Figure 11.2 as well as the DFE are SBS equalizers. SE equalizers detect sequences of symbols, so the effect of ISI is part of the estimation process. Maximum likelihood sequence estimation (MLSE) is the optimal form of sequence detection, but is highly complex.

![Figure 11.2: Equalizer Types, Structures, and Algorithms.](image)

11.2 Folded Spectrum and ISI-Free Transmission

Figure 11.3 shows a block diagram of an end-to-end system using equalization. The input symbol d_k is passed through a pulse shape filter $p(t)$ which is then transmitted over the ISI channel with impulse response $c(t)$. We define the equivalent channel impulse response $h(t) = p(t) * c(t)$, and the transmitted signal is thus given by $d(t) * p(t) * c(t)$ for $d(t) = \sum_k d_k \delta(t - kT)$ the train of information symbols. The
pulse shape $p(t)$ improves the spectral properties of the transmitted signal, as described in Chapter 5.4. This pulse shape is under the control of the system designer, whereas the channel $c(t)$ is introduced by nature and is outside the designer’s control.

At the receiver front end white Gaussian noise $n(t)$ is added to the received signal for a resulting signal $w(t)$. The first operation on the received signal $w(t)$ is to pass the signal through an analog matched filter $g^*(t)$. The purpose of the matched filter is to maximize the SNR of the signal before sampling and subsequent processing\footnote{While the matched filter could be more efficiently implemented digitally, the analog implementation before the sampler allows for a smaller dynamic range in the sampler, which significantly reduces cost.}. Recall from Chapter 5.1 that in AWGN the SNR of the received signal is maximized using a matched filter that is matched to the pulse shape. This result also indicates that for the system shown in Figure 11.3, SNR is maximized by passing $w(t)$ through a filter matched to $h(t)$, so ideally we would have $g(t) = h(t)$. However, since the channel impulse response $c(t)$ is time-varying and sometimes unknown, and analog filters are not easily tuneable, it is not possible to have $g^*(t) = h^*(-t)$. Thus, part of the art of equalizer design is to choose $g^*(t)$ to get good performance. The fact that $g^*(t)$ cannot be matched to $h(t)$ can result in significant performance degradation and also makes the receiver extremely sensitive to timing error. These problems are somewhat mitigated by oversampling $w(t)$ at a rate much faster than the symbol rate: this process is called fractionally-spaced equalization [1]

The output of the matched filter is sampled and then passed through a digital equalizer. Digital implementation of the equalizer is highly desirable, since digital filters are cheap, easy to implement, and easily tuneable to adjust for changing channel conditions. Let $f(t)$ denote the combined baseband impulse response of the transmitter, channel, and matched filter:

$$f(t) = p(t) \ast c(t) \ast g^*(-t).$$

Then the matched filter output is given by

$$y(t) = d(t) \ast f(t) + n_g(t) = \sum d_k f(t - kT) + n_g(t),$$

where $n_g(t) = n(t) \ast g^*(-t)$ is the equivalent baseband noise at the equalizer input and T is the symbol time. If we sample $y(t)$ every T seconds we obtain $y_n = y(nT)$ as

$$y_n = \sum_{k=-\infty}^{\infty} d_k f(nT - kT) + n_g(nT)$$

$$\triangleq \sum_{k=-\infty}^{\infty} d_k f_{n-k} + \nu_n$$

$$= d_n f_0 + \sum_{k \neq n} d_k f_{n-k} + \nu_n.$$ \hspace{1cm} (11.4)

where the first term in (11.4) is the desired data bit, the second term is the ISI, and the third term is the sampled baseband noise. We see from (11.4) that we get zero ISI if $f_{n-k} = 0$ for $k \neq n$, i.e. $f_k = \delta_k f_0$. In this case (11.4) reduces to $y_n = d_n f_0 + \nu_n$.

We now show that the condition for ISI-free transmission, $f_k = \delta_k f_0$, is satisfied if and only if

$$F_\Sigma(f) \triangleq \frac{1}{T} \sum_{n=-\infty}^{\infty} F(f + \frac{n}{T}) = f_0.$$ \hspace{1cm} (11.5)

The function $F_\Sigma(f)$ is often called the folded spectrum, and $F_\Sigma(f) = f_0$ implies that the folded spectrum is flat.
Figure 11.3: End-to-End System.

To show this equivalence, first note that

\[
 f_k = \int_{-\infty}^{\infty} F(f) e^{j2\pi kfT} df = \sum_{n=-\infty}^{\infty} \int_{-1/2T}^{1/2T} F(f) e^{j2\pi kfT} df = \sum_{n=-\infty}^{\infty} \int_{-1/2T}^{1/2T} F(f') e^{j2\pi k(f'+n/T)T} df' = \int_{-1/2T}^{1/2T} e^{j2\pi kfT} \sum_{n=-\infty}^{\infty} F(f + \frac{n}{T}) df.
\]

(11.6)

We first show that a flat folded spectrum implies that \(f_k = \delta_k f_0 \). Suppose (11.5) is true. Then by (11.6),

\[
 f_k = T \int_{-1/2T}^{1/2T} e^{-j2\pi kfT} f_0 T df = \frac{\sin \pi k}{\pi k} f_0 = \delta_k f_0,
\]

(11.7)

which is the desired result. We now show that \(f_k = \delta_k f_0 \) implies a flat folded spectrum. If \(f_k = \delta_k f_0 \) then by (11.6),

\[
 f_k = T \int_{-1/2T}^{1/2T} F_{\Sigma}(f) e^{j2\pi kfT} df.
\]

(11.8)

So \(f_k \) is the Fourier transform of \(F_{\Sigma}(f) \). Therefore, if \(f_k = \delta_k f_0 \), \(F_{\Sigma}(f) = f_0 \).

11.3 Linear Equalizers

If \(F_{\Sigma}(f) \) is not flat, we can use the equalizer \(H_{eq}(z) \) in Fig. 11.3 to reduce ISI. In this section we assume a linear equalizer:

\[
 H_{eq}(z) = w_0 + w_1 z^{-1} + \ldots + w_N z^{-N}.
\]

(11.9)

The length of the equalizer \(N \) is typically dictated by implementation considerations, since a large \(N \) usually entails higher complexity. For a given equalizer size \(N \) the only task for the equalizer design is
to determine the equalizer coefficients \(\{w_i\}_{i=0}^N \). Recall that our performance metric in wireless systems is probability of error (or outage probability), so the optimal choice of equalizer coefficients would be the coefficients that minimize probability of error. Unfortunately it is extremely difficult to optimize the \(\{w_i\} \)s with respect to this criterion. Since we cannot directly optimize for our desired performance metric, we must instead use an indirect optimization that balances ISI mitigation with the prevention of noise enhancement, as discussed relative to the simple analog example above. We now describe two linear equalizers: the Zero Forcing (ZF) equalizer and the Minimum Mean Square Error (MMSE) equalizer. The former equalizer cancels all ISI, but can lead to considerable noise enhancement. The latter technique minimizes the expected mean squared error between the transmitted symbol and the symbol detected at the equalizer output, thereby providing a better balance between ISI mitigation and noise enhancement. Because of this more favorable balance, MMSE equalizers tend to have better BER performance than systems using the ZF algorithm.

11.3.1 Zero Forcing (ZF) Equalizers

The samples \(\{y_k\} \) input to the equalizer can be represented based on the discretized combined system response \(f(t) = h(t) * g^*(-t) \) as

\[
Y(z) = D(z)F(z) + N(z),
\]

where \(N(z) \) is the power spectrum of the white noise after passing through the matched filter \(G^*(1/z^*) \) and the equalizer \(H_{eq}(z) \) and

\[
F(z) = H(z)G^*(1/z^*) = \sum_{n} f(nT)z^{-n}.
\]

The zero-forcing equalizer removes all ISI introduced in the combined response \(f(t) \). From (11.10) we see that the equalizer to accomplish this is given by

\[
H_{ZF}(z) = \frac{1}{F(z)}.
\]

This is the discrete-time equivalent to the analog equalizer (11.1) described above, and it suffers from the same noise enhancement properties. Specifically, the power spectrum \(N(z) \) is given by

\[
N(z) = N_g(z)|H_{ZF}(z)|^2 = \frac{N_0|G^*(1/z^*)|^2}{|F(z)|^2} = \frac{N_0|G^*(1/z^*)|^2}{|H(z)|^2|G^*(1/z^*)|^2} = \frac{N_0}{|H(z)|^2}.
\]

We see from (11.13) that if the channel \(H(z) \) is sharply attenuated at any frequency within the bandwidth of interest, as is common on frequency-selective fading channels, the noise power will be significantly increased. This motivates an equalizer design that better optimizes between ISI mitigation and noise enhancement. One such equalizer is the MMSE equalizer, which we describe in the next section.

The ZF equalizer defined by \(H_{ZF}(z) = 1/F(z) \) may not be implementable as a finite impulse response (FIR) filter. Specifically, it may not be possible to find a finite set of coefficients \(w_0, \ldots, w_N \) such that

\[
w_0 + w_1 z^{-1} + \ldots + w_N z^{-N} = \frac{1}{F(z)}.
\]

In this case we find the set of coefficients \(\{w_i\} \) that best approximates the zero-forcing equalizer. Note that this is not straightforward since the approximation must be valid for all values of \(z \). There are many ways we can make this approximation. One technique is to represent \(H_{ZF}(z) \) as an infinite impulse response (IIR) filter, \(1/F(z) = \sum_{i=-\infty}^{\infty} c_i z^{-i} \) and then set \(w_i = c_i \). Another technique is to take \(w_i = c_i \) where \(\{c_i\} \) is the inverse z-transform of \(1/F(z) \) (it can be shown that this minimizes the \(L_2 \) norm of \(1/F(z) - (w_0 + w_1 z^{-1} + \ldots + w_N z^{-N}) \) at \(z = e^{j\omega} \). Other approximations are also used in practice.
11.3.2 Minimum Mean Square Error (MMSE) Equalizer

In MMSE equalization the goal of the equalizer design is to minimize the average mean square error (MSE) between the transmitted symbol d_k and its estimate \hat{d}_k at the output of the equalizer, i.e. we want to find the $\{w_i\}$s to minimize $E[\hat{d}_k - d_k]^2$. Since we are dealing with linear equalizers, the equalizer output \hat{d}_k is a linear combination of the input samples y_k:

$$\hat{d}_k = \sum_{i=0}^{N} w_i y_{k-i}.$$ \hspace{1cm} (11.15)

As such, finding the optimal filter coefficients $\{w_i\}$ becomes a standard problem in linear estimation. In fact, if the noise input to the equalizer is white, this is a standard Weiner filtering problem. The problem is that because of the matched filter $g^*(−t)$ at the receiver front end, the noise input to the equalizer is not white but colored with power spectrum $N_0|G^*(1/z^*)|^2$. Therefore, in order to apply known techniques for optimal linear estimation, we expand the filter $H_{eq}(z)$ into two components, a noise whitening component $1/G^*(1/z^*)$ and an ISI removal component $\hat{H}_{eq}(z)$, as shown in Figure 11.4.

![Figure 11.4: MMSE Equalizer with Noise Whitening Filter.](image)

The purpose of the noise whitening filter, as indicated by the name, is to whiten the noise such that the noise component output from this filter has a constant power spectrum. Since the noise input to this receiver has power spectrum $N_0|G^*(1/z^*)|^2$, the appropriate noise whitening filter is $1/G^*(1/z^*)$ so that the noise power spectrum at the output of the noise whitening filter is $N_0|G^*(1/z^*)|^2/|G^*(1/z^*)|^2 = N_0$. Note that the filter $1/G^*(1/z^*)$ is not the only filter that will whiten the noise, and another noise whitening filter with more desirable properties (like stability) may be chosen. It might seem odd at first to introduce the matched filter $g^*(−t)$ at the receiver front end only to cancel its effect in the equalizer. Recall, however, that the matched filter is meant to maximize the SNR at the A/D input. By removing the effect of this matched filter through noise whitening we merely simplify the design of $\hat{H}_{eq}(z)$ to minimize MSE. In fact if the noise whitening filter does not yield optimal performance then its effect would be cancelled by the $\hat{H}_{eq}(z)$ filter design, as we will see below in the case of IIR MMSE equalizers.

We assume the filter $\hat{H}_{eq}(z)$, with input u_n, is a linear filter with N taps:

$$\hat{H}_{eq}(z) = w_0 + w_1 z^{-1} + \ldots + w_N z^{-N}.$$ \hspace{1cm} (11.16)
Our goal is to design the filter coefficients \{w_i\} so as to minimize \(E[d_k - \hat{d}_k]^2\). This is the same goal as for the total filter \(H_{eq}(z)\), we’ve just added the noise whitening filter to make solving for these coefficients simpler. We define the following column vectors \(\mathbf{v} = (v_k, v_{k-1}, \ldots, v_{k-N})\) and \(\mathbf{w} = (w_0, \ldots, w_N)\). Then the output of the filter \(\hat{H}_{eq}(z)\) is

\[
\hat{d}_k = \mathbf{w}^T \mathbf{v} = \mathbf{v}^T \mathbf{w}.
\]

Thus, we want to minimize the mean square error

\[
J = E[d_n - \hat{d}_n]^2 = E\left[\mathbf{w}^T \mathbf{v} \mathbf{v}^H \mathbf{w}^* - 2 \Re\{\mathbf{v}^H \mathbf{w}^* \mathbf{d}_n\} + |\mathbf{d}_n|^2\right], \tag{11.17}
\]

where for a vector \(\mathbf{x} = [x_1, \ldots, x_N]\), \(\mathbf{x}^* = [x_1^*, \ldots, x_N^*]\), and \(\mathbf{x}^H = [x_1^*, \ldots, x_N^*]^T\). Define \(M_{e} = E[\mathbf{v} \mathbf{v}^H]\) and \(\mathbf{d} = E[\mathbf{v} \mathbf{w}^*]\). The matrix \(M_{e}\) is an \(N \times N\) Hermitian matrix and \(\mathbf{d}\) is a length \(N\) row vector. Assume \(E[d_k]^2 = 1\). Then the MSE \(J\) is

\[
J = \mathbf{w}^T M_{v} \mathbf{w}^* - 2 \Re\{\mathbf{v}^H \mathbf{w}^*\} + 1. \tag{11.19}
\]

We obtain the optimal tap vector \(\mathbf{w}\) by setting the gradient \(\nabla_{\mathbf{w}} J = 0\) and solving for \(\mathbf{w}\). From (11.19) it can be shown that [5, 3]

\[
\nabla_{\mathbf{w}} J = \left(\frac{\partial J}{\partial w_0}, \ldots, \frac{\partial J}{\partial w_N}\right) = 2 \mathbf{w}^T M_{v} - 2 \mathbf{d}. \tag{11.20}
\]

Setting this to zero yields \(\mathbf{w}^T M_{v} = \mathbf{d}\) or, equivalently, that the optimal tap weights are given by

\[
\mathbf{w}_{opt} = \left(M_{v}^T\right)^{-1} \mathbf{d}^H. \tag{11.21}
\]

Note that solving for \(\mathbf{w}_{opt}\) requires a matrix inversion with respect to the filter inputs. Thus, the complexity of this computation is quite high, typically on the order of \(N^2\) to \(N^3\) operations. Substituting in these optimal tap weights we obtain the minimum mean square error as

\[
J_{min} = 1 - \mathbf{d}^T M_{v}^{-1} \mathbf{d}. \tag{11.22}
\]

For an infinite length equalizer, \(\mathbf{v} = (v_{n+\infty}, \ldots, v_{n}, v_{n-\infty})\) and \(\mathbf{w} = (w_{-\infty}, \ldots, w_{0}, \ldots, w_{\infty})\). Then \(\mathbf{w}^T M_{v} = \mathbf{d}\) can be written as

\[
\sum_{i=-\infty}^{\infty} w_i (f_{j-i} + N_0) \delta_{ij} = g^*_{-j}, \quad -\infty \leq j \leq \infty. \tag{11.23}
\]

Taking \(z\) transforms and noting that \(\hat{H}_{eq}(z)\) is the \(z\) transform of the filter coefficients \(\mathbf{w}\) yields

\[
\hat{H}_{eq}(z)(F(z) + N_0) = G^*(1/z^*). \tag{11.24}
\]

Solving for \(\hat{H}_{eq}(z)\) yields

\[
\hat{H}_{eq}(z) = \frac{G^*(1/z^*)}{F(z) + N_0}. \tag{11.25}
\]

Since the MMSE equalizer consists of the noise whitening filter \(1/G^*(1/z^*)\) plus the ISI removal component \(\hat{H}_{eq}(z)\), we get that the full MMSE equalizer, when it is not restricted to be finite length, becomes

\[
H_{eq}(z) = \frac{\hat{H}_{eq}(z)}{G^*(1/z^*)} = \frac{1}{F(z) + N_0}. \tag{11.26}
\]
There are three interesting things to notice about this result. First of all, the ideal infinite length MMSE equalizer cancels out the noise whitening filter. Second, this infinite length equalizer is identical to the ZF filter except for the noise term N_0, so in the absence of noise the two equalizers are equivalent. Finally, this ideal equalizer design clearly shows a balance between inverting the channel and noise enhancement: if $F(z)$ is highly attenuated at some frequency the noise term N_0 in the denominator prevents the noise from being significantly enhanced by the equalizer. Yet at frequencies where the noise power spectral density N_0 is small compared to the composite channel $F(z)$, the equalizer effectively inverts $F(z)$.

For the equalizer (11.26) it can be shown [3] that the minimum MSE (11.22) can be expressed in terms of the folded spectrum $F_\Sigma(f)$ as

$$J_{\text{min}} = T \int_{-5/T}^{5/T} \frac{N_0}{F_\Sigma(f) + N_0} df. \quad (11.27)$$

This expression for MMSE has several interesting properties. First it is readily seen, as expected, that $0 \leq J_{\text{min}} = E[\hat{d}_k - \hat{d}_k]^2 \leq 1$. In addition, $J_{\text{min}} = 0$ in the absence of noise ($N_0 = 0$) as long as $F_\Sigma(f) \neq 0$ within the signal bandwidth of interest. Also, as expected, $J_{\text{min}} = 1$ if $N_0 = \infty$.

11.4 Maximum Likelihood Sequence Estimation

Maximum-likelihood sequence estimation (MLSE) avoids the problem of noise enhancement since it doesn’t use an equalizing filter: instead it estimates the sequence of transmitted symbols [4]. The structure of the MLSE is the same as in Figure 11.3 except that the equalizer $H_{\text{eq}}(z)$ and decision device are replaced by the MLSE algorithm. Given the channel response $h(t)$, the MLSE algorithm chooses the input sequence $\{d_k\}$ that maximizes the likelihood of the received signal $w(t)$. We now investigate this algorithm in more detail.

Using a Gram-Schmidt orthonormalization procedure we can express $w(t)$ on a time interval $[0, LT]$ as

$$w(t) = \sum_{n=1}^{N} w_n \phi_n(t), \quad (11.28)$$

where $\{\phi_n(t)\}$ form a complete set of orthonormal basis functions. The number N of functions in this set is a function of the channel memory, since $w(t)$ on $[0, LT]$ depends on d_0, \ldots, d_L. With this expansion we have

$$w_n = \sum_{k=-\infty}^{\infty} d_k h_{nk} + n_n = \sum_{k=0}^{L} d_k h_{nk} + n_n, \quad (11.29)$$

where

$$h_{nk} = \int_{0}^{T} h(t - kT) \phi_n^*(t) dt \quad (11.30)$$

and

$$n_n = \int_{0}^{T} n(t) \phi_n^*(t) dt. \quad (11.31)$$

The n_n are complex Gaussian random variables with mean zero and covariance $.5 E[n_n^* n_m] \times N_0 \delta(n - m)$. Thus, $W^N = (w_1, \ldots, w_N)$ has a multivariate Gaussian distribution

$$p(W^N | d^L, h(t)) = \Pi_{n=1}^{N} \frac{1}{\pi N_o} \exp \left[-\frac{1}{N_0} \left| w_n - \sum_{k=0}^{L} d_k h_{nk} \right|^2 \right]. \quad (11.32)$$
Given a received signal \(w(t) \) or, equivalently, \(W^N \), the MLSE decodes this as the symbol sequence \(d^L \) that maximizes the likelihood function \(p(W^N|d^L, h(t)) \) (or the log of this function) that \(W^N \) is received given that \(d^L \) was transmitted. That is, the MLSE outputs the sequence

\[
\hat{d}^L = \arg \max \left[\log p(W^N|d^L, h(t)) \right]
\]

\[
= \arg \max \left[- \sum_{n=1}^{N} |w_n - \sum_k d_k h_{nk}|^2 \right]
\]

\[
= \arg \max \left[- \sum_{n=1}^{N} |w_n|^2 + \sum_k \left(w_n^* \sum_{k} d_k h_{nk}^* + w_n \sum_{k} d_k h_{nk} \right) - \sum_{n=1}^{N} \left(\sum_k d_k h_{nk} \right) \left(\sum_{m} d_m^* h_{nm}^* \right) \right]
\]

\[
= \arg \max \left[2 \Re \left\{ \sum_{k} d_k^* \sum_{n=1}^{N} w_n h_{nk}^* \right\} - \sum_{k} \sum_{m} d_k d_m^* \sum_{n=1}^{N} h_{nk} h_{nm}^* \right]. \quad (11.33)
\]

Note that

\[
\sum_{n=1}^{N} w_n h_{nk}^* = \int_{-\infty}^{\infty} w(\tau) h^*(\tau - nT) d\tau = y_n, \quad (11.34)
\]

and

\[
\sum_{n=1}^{N} h_{nk} h_{nm}^* = \int_{-\infty}^{\infty} h(\tau - kT) h^*(\tau - mT) d\tau = f_{km}. \quad (11.35)
\]

Combining (11.33), (11.34), and (11.35) we have that

\[
\hat{d}^L = \arg \max \left[2 \Re \left\{ \sum_{k} d_k^* y_k \right\} - \sum_{k} \sum_{m} d_k d_m^* f_{km} \right]. \quad (11.36)
\]

We see from this equation that the MLSE output depends only on the sampler output \(\{y_k\} \) and the channel parameters \(f_{nk} = f(nT - kT) \) where \(f(t) = h(t) * h^*(-t) \). Since the derivation of the MLSE is based on the channel output only, our derivation implies that the receiver matched filter in Figure 11.1 is optimal for MLSE detection (typically the matched filter is optimal for detecting signals in AWGN, but this derivation shows that it is also optimal for detecting signals in the presence of ISI if MLSE is used).

The MLSE algorithm is also used in ML decoding, and the Viterbi algorithm can be used for MLSE. However, the complexity of this equalization technique grows exponentially with the channel delay spread. A nonlinear technique with significantly less complexity is the decision-feedback decoder, or DFE.

11.5 Decision-Feedback Equalization

The DFE consists of a feedforward filter with the received sequence as input (similar to the linear equalizer) followed by a feedback filter with the previously detected sequence as input. The DFE structure is shown in Figure 11.5. Effectively, the DFE determines the ISI contribution from the detected symbols \(\{d_n\} \) by passing them through the feedback filter. The resulting ISI is then subtracted from the incoming symbols. Since the feedback filter \(D(z) \) in Figure 11.5 sits in a feedback loop, it must be strictly causal, or else the system is unstable. The feedback filter of the DFE does not suffer from noise enhancement because it estimates the channel frequency response rather than its inverse. For channels with deep spectral nulls, DFEs generally perform much better than linear equalizers.

DFEs exhibit feedback errors if \(\hat{d}_n \neq d_n \), since the ISI subtracted by the feedback path is not the true ISI corresponding to \(d_n \). This error therefore propagates to later bit decisions. Moreover, this error
11.6 Equalizer Training and Tracking

All of the equalizers described so far are designed based on a known value of the composite channel response \(h(t) = p(t) \ast c(t) \). Since the channel \(c(t) \) in generally not known when the receiver is designed, the equalizer must be tunable so it can adjust to different values of \(c(t) \). Moreover, since in wireless channels \(c(t) = c(\tau, t) \) will change over time, the system must periodically estimate the channel \(c(t) \) and update the equalizer coefficients accordingly. This process is called equalizer training.

During training the \(N \) coefficients of the equalizer are updated at time \(k \) based on a known training sequence \(\{d_{k-M}, \ldots, d_k\} \) that has been sent over the channel. The length \(M \) of the training sequence depends on the number of equalizer coefficients that must be determined and the convergence speed of the training algorithm. Note that the equalizer must be retrained when the channel decorrelates, i.e. at least every \(T_c \) seconds where \(T_c \) is the channel coherence time. Thus, if the training algorithm is slow relative to the channel coherence time then the channel may change before the equalizer can learn the channel. Specifically, if \(MT > T_c \) then the channel will decorrelate before the equalizer has finished training. In this case equalization is not an effective countermeasure for ISI, and some other technique (e.g. multicarrier modulation or CDMA) is needed.

Let \(\{d_k\} \) denote the bit decisions output from the equalizer given a transmitted training sequence \(\{d_k\} \). Our goal is to update the \(N \) equalizer coefficients at time \(k+1 \) based on the training sequence we have received up to time \(k \). We will denote these updated coefficients as \(\{w_0(k+1), \ldots, w_N(k+1)\} \). We will use the MMSE as our criterion to update these coefficients, i.e. we will choose \(\{w_0(k+1), \ldots, w_N(k+1)\} \) as the coefficients that minimize the MSE between \(d_k \) and \(d_k^* \). Recall that \(d_k = w_0(k)y_k + w_1(k)y_{k-1} + \ldots + w_N(k)y_{k-N} \), where \(y_k \) is the output of the sampler in Figure 11.1 at time \(k \) with the known training sequence as input. The \(\{w_0(k+1), \ldots, w_N(k+1)\} \) that minimize MSE are obtained via a Weiner filter [5, 3]. Specifically,

\[
w(k+1) = \{w_0(k+1), \ldots, w_N(k+1)\} = R^{-1}p, \tag{11.37}
\]
where \(\mathbf{p} = \mathbf{d}_k[y_k y_{k-1} \cdots y_{k-N}]^T \) and

\[
R = \begin{bmatrix}
|y_k|^2 & y_k y_{k-1}^* & \cdots & y_k y_{k-N}^* \\
y_{k-1} y_k^* & |y_{k-1}|^2 & \cdots & y_{k-1} y_{k-N}^* \\
\vdots & \vdots & \ddots & \vdots \\
y_{k-N} y_k^* & \cdots & \cdots & |y_{k-N}|^2
\end{bmatrix}. \tag{11.38}
\]

Note that the optimal tap updates in this case requires a matrix inversion, which requires \(N^2 - N^3 \) multiply operations on each iteration (each bit time \(T \)). However, the convergence of this algorithm is very fast: it often converges in around \(N \) bit times for \(N \) the number of equalizer tap weights.

If complexity is an issue then the large number of multiply operations needed to do MMSE training can be prohibitive. A simpler technique is the least mean square (LMS) algorithm [5]. In this algorithm the tap weight vector \(\mathbf{w}(k + 1) \) is updated linearly as

\[
\mathbf{w}(k + 1) = \mathbf{w}(k) + \Delta \epsilon_k [y_k^* \cdots y_{k-N}^*], \tag{11.39}
\]

where \(\epsilon_k = d_k - \hat{d}_k \) is the error between the bit decisions and the training sequence and \(\Delta \) is the step size of the algorithm, which is a parameter that can be chosen. The choice of \(\Delta \) dictates the convergence speed and stability of the algorithm. For small values of \(\Delta \) convergence is very slow, at it takes many more than \(N \) bits for the algorithm to converge to the proper equalizer coefficients. However, if \(\Delta \) is chosen to be large then the algorithm can go unstable, basically skipping over the desired tap weights at every iteration. Thus, for good performance of the LMS algorithm \(\Delta \) is typically small and convergence is typically slow. However, the LMS algorithm exhibits significantly reduced complexity compared to the MMSE algorithm since the tap updates only require approximately \(2N + 1 \) multiply operations per iteration. Thus, the complexity is linear in the number of tap weights. Other algorithms, such as the root-least-squares (RLS), Square-root-least-squares, and Fast Kalman provide various tradeoffs in terms of complexity and performance that lie between the two extremes of the LMS algorithm (slow convergence but low complexity) and the MMSE algorithm (fast convergence but very high complexity). A description of these other algorithms is given in [1]. The table below summarizes the specific number of multiply operations and the relative convergence rate of all these algorithms.

Note that the bit decisions \(\hat{d}_k \) output from the equalizer are typically passed through a threshold detector to round the decision to the nearest bit value\(^2\). The resulting roundoff error can be used to adjust the equalizer coefficients during data transmission. This is called equalizer tracking. Tracking is based on the premise that if the roundoff error is nonzero then the equalizer is not perfectly trained, and the roundoff error can be used to adjust the channel estimate inherent in the equalizer. The procedure works as follows. The equalizer output bits \(\hat{d}_k \) and threshold detector output bits \(\hat{d}_k \) are used to adjust an estimate of the baseband equivalent composite channel \(H(z) \). In particular, the coefficients of \(H(z) \) are adjusted to minimize the MSE between \(\hat{d}_k \) and \(\hat{d}_k \), using the same MMSE procedures described earlier in this chapter. The updated version of \(H(z) \) is then taken to equal the composite channel and used to update the equalizer coefficients accordingly. More details can be found in [5, 3].

A summary of the training and tracking characteristics for the different algorithms as a function of the number of taps \(N \) is given in the following table.

\(^2\)A bit value of zero or one corresponds to binary decisions. For higher level modulations the threshold detector rounds to the nearest constellation point.

234
<table>
<thead>
<tr>
<th>Algorithm</th>
<th># of multiply operations</th>
<th>Complexity</th>
<th>Convergence</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMS</td>
<td>$2N + 1$</td>
<td>Low</td>
<td>Slow ($>> NT_s$)</td>
<td>Poor</td>
</tr>
<tr>
<td>MMSE</td>
<td>$N^2 - N^3$</td>
<td>Very High</td>
<td>Fast ($\approx NT_s$)</td>
<td>Good</td>
</tr>
<tr>
<td>RLS</td>
<td>$2.5N^2 + 4.5N$</td>
<td>High</td>
<td>Fast</td>
<td>Good</td>
</tr>
<tr>
<td>Fast Kalman</td>
<td>$20N + 5$</td>
<td>Fairly Low</td>
<td>Fast</td>
<td>Good</td>
</tr>
<tr>
<td>Square Root RLS</td>
<td>$1.5N^2 + 6.5N$</td>
<td>High</td>
<td>Fast</td>
<td>Good</td>
</tr>
</tbody>
</table>

Note that the Fast Kalman and Square Root RLS may be unstable in their convergence and tracking, which is the price paid for their fast convergence with relatively low complexity.
Bibliography

Chapter 12

Multicarrier Modulation

The basic idea of multicarrier modulation is to divide the transmitted bitstream into many different substreams and send these over many different subchannels. Typically the subchannels are orthogonal under ideal propagation conditions, in which case multicarrier modulation is often referred to as orthogonal frequency division multiplexing (OFDM). The data rate on each of the subchannels is much less than the total data rate, and the corresponding subchannel bandwidth is much less than the total system bandwidth. The number of substreams is chosen to insure that each subchannel has a bandwidth less than the coherence bandwidth of the channel, so the subchannels experience relatively flat fading. Thus, the ISI on each subchannel is small. Moreover, in the discrete implementation of OFDM, often called discrete multitone (DMT), the ISI can be completely eliminated through the use of a cyclic prefix. The subchannels in OFDM need not be contiguous, so a large continuous block of spectrum is not needed for high rate multicarrier communications.

Over the past few years, there has been increasing interest in multicarrier modulation for a variety of applications. However, multicarrier modulation is not a new technique: it was first used for military HF radios in the late 1950’s and early 1960’s. For the last ten years, multicarrier modulation has been used in many applications [1], including Digital Audio Broadcasting in Europe [2], high-speed digital subscriber lines (HDSL) [3], and the most recent generation of wireless LANs (IEEE 802.11a). The multicarrier technique can be implemented in multiple ways and are sometimes called by different names, including frequency division multiplexing (FDM) [4] and vector coding [5], as well as DMT [3] and OFDM [6].

There is some debate as to whether multicarrier modulation is better for ISI channels than single carrier transmission with equalization. It is claimed in [2] that for mobile radio applications, single carrier with equalization has roughly the same performance as multicarrier modulation with channel coding, frequency-domain interleaving, and weighted maximum-likelihood decoding. Adaptive loading was not taken into account in [2], which has the potential to significantly improve multicarrier performance [7]. But there are other problems with multicarrier modulation which impair its performance, most significantly frequency offset and timing jitter, which impair the orthogonality of the subchannels. In addition, the peak-to-average power ratio of multicarrier is significantly higher than that of single carrier systems, which is a serious problem when nonlinear amplifiers are used. The relative performance of multicarrier systems versus single carrier, along with techniques to overcome the performance impairments of multicarrier, are current topics of intense research.
12.1 Orthogonal Frequency Division Multiplexing (OFDM)

The simplest form of multicarrier modulation divides the data stream into multiple substreams to be transmitted over different orthogonal subchannels centered at different subcarrier frequencies. The number of substreams is chosen to make the symbol time on each substream much greater than the delay spread of the channel or, equivalently, to make the substream bandwidth less than the channel coherence bandwidth. This insures that the substreams will not experience significant ISI.

Consider a system with baseband bandwidth B (passband bandwidth $2B$) and a desired data rate R. The coherence bandwidth for the channel is assumed to be $B_c \geq B$. We set N sufficiently large so that the baseband subchannel bandwidth $B_N = B/N << B_c$, which insures relatively flat-fading on each subchannel. The bit stream is divided into N substreams that are linearly-modulated (typically via MQAM or MPSK) relative to the subcarrier frequencies f_n and then transmitted in parallel over the N subchannels. For nonoverlapping channels we set $f_n = f_c + n(2B_N)$, $n = 0, \ldots, N-1$. The multicarrier system with nonoverlapping channels is shown in Figure 12.1. The data rate for each substream is $R_N = R/N$, and the symbol time for each substream is T_N. The transmitted signal over one symbol time T_N is given by

$$s(t) = \mathcal{R} \left\{ \sum_{n=0}^{N-1} s_n g(t) e^{j2\pi f_n t} \right\}, \quad (12.1)$$

where s_n is the complex symbol associated with the nth subcarrier. If we assume raised cosine pulses for $g(t)$ we get $T_N = \frac{1}{2}(1+\beta)/B_N$, where β is the rolloff factor (e.g., for rectangular pulses, $T_N = \frac{1}{2}/B_N$). The substreams are sent in their respective orthogonal subchannels with passband bandwidth $2B_N$, yielding a total passband bandwidth $2NB_N = 2B$ and data rate $NR_N = R$. Thus, this form of multicarrier modulation does not change the data rate or signal bandwidth relative to single-carrier systems, but it almost completely eliminates ISI since the subchannels have $B_N << B_c$ and therefore they experience relatively little frequency-selective fading.

OFDM with nonoverlapping subchannels is basically a form of frequency-division (see Chapter 14.2.1), a technique that allows multiple users to share the same system bandwidth. The advantage of using nonoverlapping subchannels is that small frequency offsets and timing jitter do not have much impact on the orthogonality of the subchannels. However, the frequency division approach is not spectrally efficient. We can improve on the spectral efficiency of OFDM by overlapping the subcarriers. The subcarriers must still be orthogonal so that they can be separated out by the demodulator in the receiver. Note that the baseband subcarriers $\{\cos(2\pi j/T_N), j = 1, 2, \ldots\}$ form a set of orthonormal basis functions on the interval $[0, T_n]$. Moreover, it is easily shown that no set of subcarriers with a smaller frequency separation forms an orthonormal set on $[0, T_n]$. This implies that the minimum frequency separation required for subcarriers to remain orthogonal over the symbol interval $[0, T_N]$ is $1/T_N$. So if we use raised cosine pulses with $\beta = 1$, we would have $T_N = 1/B_N$, and a carrier separation of B_N. Since the passband bandwidth of each subchannel is $2B_N$, the passband subchannels in this system would overlap, as illustrated in Figure 12.2.

Clearly, in order to separate out overlapping subcarriers, a different receiver structure is needed than the one shown in Figure 12.1. In particular, overlapping subchannels are demodulated with the receiver structure shown in Figure 12.3. We now show that this structure demodulates the appropriate symbol without interference from overlapping subchannels. For simplicity, our analysis will assume rectangular pulse shapes and in-phase signaling only, so that s_n in (12.1) is real and modulated with a cosine carrier. The same structure in Figure 12.3 using sine carriers would be used to demodulate the quadrature signal component, and the analysis for this component would be basically the same as the in-phase analysis.

Consider the received symbol on the ith branch, \hat{s}_i, in the absence of noise ($n(t) = 0$). The passband subcarriers with separation $1/T_N$ are given by $f_j = f_c + j/T_N$, $j = 0, 1, \ldots, N-1$. For transmitted/received
Figure 12.1: Multicarrier Transmitter and Receiver.
signal $s(t)$ given by (12.1) we have

$$
\hat{s}_i = \frac{1}{T_N} \int_0^{T_N} \left(\sum_{j=0}^{N-1} s_j \cos(2\pi f_j t) \right) \cos(2\pi f_i t) \, dt \\
= \frac{1}{T_N} \sum_{j=0}^{N-1} s_j \int_0^{T_N} \cos(2\pi (f_c + j/T_N) t) \cos(2\pi (f_c + i/T_N) t) \, dt \\
= \frac{1}{2T_N} \sum_{j=0}^{N-1} s_j \left[\int_0^{T_N} \cos(2\pi (j - i) t/T_N) \, dt + \int_0^{T_N} \cos(2\pi (2f_c + j + i)/T_N) \, dt \right] \\
\approx \frac{1}{2} \sum_{j=0}^{N-1} s_j \delta(j - i) \\
= \frac{1}{2} s_i.
$$

where the approximation holds for $f_c >> 1/T_N$, in which case the second integral in (12.2) is approximately zero. This multicarrier system has twice the bandwidth efficiency of the system depicted in
Figure 12.1 with nonoverlapping subcarriers. Note, however, that since the subcarriers overlap, their orthogonality is compromised by timing jitter, frequency offset, and fading. These effects, even when relatively small, can significantly degrade performance, as they cause subchannels to interfere with each other [9].

12.2 Discrete Implementation of OFDM (Discrete Multitone)

Although OFDM was invented in the 1950s, its requirement for separate modulators and demodulators on each subchannel was far too complex for most system implementations at the time. However, the development of the FFT and IFFT twenty years later, combined with the realization that OFDM can be implemented very simply and cheaply with these algorithms, ignited its widespread use. In this section we illustrate the discrete implementation of OFDM using FFT and IFFT hardware. This discrete implementation is sometimes referred to as discrete multitone modulation (DMT).

The DMT implementation of OFDM is shown in Figure 12.4. The input data stream is modulated by a QAM modulator, resulting in a complex symbol X. This symbol stream is passed through a serial-to-parallel converter, whose output is a set of N parallel QAM symbols corresponding to the symbols transmitted over each of the subcarriers. Thus, the N symbols output from the serial-to-parallel converter are the discrete frequency components of OFDM output signal $s(t)$. In order to generate $s(t)$, we therefore need to convert these frequency components into time samples. We therefore perform an inverse DFT on these N symbols, which is efficiently implemented using the IFFT algorithm. The IFFT yields a set of parallel outputs $\{x_0, \ldots, x_{N-1}\}$, where

$$x_n = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X_k e^{j2\pi nk/N}, \quad n = 0, 1, \ldots, N - 1. \tag{12.4}$$

If we ignore for the moment the addition of a cyclic prefix in the next block (discussed in detail below), the time samples $\{x_0, \ldots, x_{N-1}\}$ are ordered by the parallel-to-serial converter and passed through a D/A converter, resulting in the baseband OFDM signal $x(t)$. Specifically,

$$x(t) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X_k e^{j2\pi nk/N}, \quad 0 \leq t \leq T_N \tag{12.5}$$

where, as defined earlier, T_N is the duration of the OFDM symbols. The subcarrier frequencies with this implementation are given by $f_i = i/T_N$, $i = 0, \ldots, N - 1$, and the samples $\{x_0, \ldots, x_{N-1}\}$ represent samples of $x(t)$ every T_N/N seconds. The baseband OFDM signal $x(t)$ is upconverted to the carrier frequency, resulting in the transmitted signal $s(t)$. The receiver performs the reverse operation of the transmitter, so that in the absence of noise or channel distortion the original data sequence is perfectly recovered. Note that each subchannel has a symbol duration of T_N, which is chosen sufficiently large ($B/N \ll B_c$) to remove most ISI that might be introduced by the channel.

While the removal of most ISI generally yields good performance, it is possible to remove all ISI when the maximum delay spread of the channel is known. This can be done by either adding a guard time between symbol transmissions equal to the channel delay spread, in which case symbols do not interfere with subsequent symbols, or by adding a cyclic prefix after the IFFT (as shown in Figure 12.4), which is subsequently removed in the receiver. Let us now consider the cyclic prefix in more detail. Assume that the channel delay spread has a maximum value of $\mu T_N/N$, recalling that T_N/N is the sampling rate of the continuous time signal $x(t)$. Thus, the channel delay spread lasts a maximum of μ additional samples. The cyclic prefix $\{x_{N-\mu}, \ldots, x_{N-1}\}$ consists of the last μ values of the $\{x_n\}$ sequence. These μ
samples are appended to the beginning of each block of samples, yielding the new input to the D/A of \(\{x_{N-\mu}, \ldots, x_{N-1}, x_0, x_1, \ldots, X_{N-1}\} \). Note that the cyclic prefix increases the number of samples in the \(\{x_n\} \) sequence to \(N + \mu \).

Let us now consider the channel impulse response \(c(t) \). The received signal in the absence of noise will be \(r(t) = x(t) * c(t) \). Consider sampling \(c(t) \) every \(T_N/N \) seconds, which yields the sample set \(\{c_0, \ldots, c_n\} \). If we convolve \(\{x_{N-\mu}, \ldots, X_{N-1}\} \) with \(\{c_0, \ldots, c_n\} \) we obtain the received sequence \(\{r_n\} \), which has duration \(N + \mu \). In the receiver we remove the cyclic prefix by removing the last \(\mu \) samples in \(\{r_n\} \). Note then that the input to the FFT is the circular convolution of \(\{x_n\} \) and \(\{c_n\} \), which does not necessarily correspond to samples of \(r(t) = x(t) * c(t) \). However, adding the cyclic prefix at the transmitter effectively converts the circular convolution associated with the FFT to a linear convolution. Thus, the FFT output in the absence of noise is \(\hat{X}_k = C_kX_k \), where \(C_k \) is the FFT of \(\{c_0, \ldots, c_n\} \). This indicates that the effects of the channel \(c(t) \) can be completely removed by frequency equalization, i.e., multiplying each \(\hat{X}_k \) by \(1/C_k \) to completely remove the effects of the channel. However, when noise is present this leads to noise enhancement and no net gain in the subchannel SNR, as discussed in more detail below.

12.3 Fading across Subcarriers

The advantage of multicarrier modulation is that each subchannel is relatively narrowband, which mitigates the effect of delay spread. However, each subchannel experiences flat-fading, which can cause large BERs on some of the subchannels. In particular, if the transmit power on subcarrier \(i \) is \(P_i \), and the fading on that subcarrier is \(\alpha_i \), then the received SNR is \(\gamma_i = P_\alpha_i^2/(N_0B) \), where \(B \) is the bandwidth of each subchannel. If \(\alpha_i \) is small then the received SNR on the \(i \)th subchannel is quite low, which can lead to a high BER on that subchannel. Moreover, in wireless channels the \(\alpha_i \) will vary over time according to a given fading distribution, so we have the same flat-fading problem as discussed in the context of narrowband channels. We know from Chapter 6 that flat fading can seriously degrade performance, so it is important to somehow compensate for subchannels with a low SNR. There are several techniques for doing this, including frequency equalization, precoding, coding across subchannels, and adaptive loading. We now describe each of these techniques in more detail.

12.3.1 Frequency Equalization

In frequency equalization the fading \(\alpha_i \) is basically inverted in the receiver, so the received signal is multiplied by \(1/\alpha_i \), which gives a resultant signal power \(P_i\alpha_i^2/\alpha_i^2 = P_i \). While this removes the impact of fading on the desired signal, it enhances the noise. Specifically, the incoming noise signal is also multiplied by \(1/\alpha_i \), so the noise power becomes \(N_0B/\alpha_i^2 \). Thus, the resultant SNR after frequency equalization, \(\text{SNR}_{eq} \), is the same as before equalization. Therefore, frequency equalization does not really change the impact of the different subcarrier fading. More details on frequency equalization can be found in [2].

12.3.2 Precoding

Precoding uses the same idea as frequency equalization, except that the fading is inverted at the transmitter instead of the receiver. This technique requires that the transmitter have knowledge of the subchannel fading \(\alpha_i \). In this case, if the desired received signal power in the \(i \)th subchannel is \(P_i \), and the channel introduces fading of \(\alpha_i \) in that subchannel, then the transmitter sends the signal in the \(i \)th subchannel with power \(P_i/\alpha_i^2 \). This signal is multiplied by the channel gain \(\alpha_i \), so the received signal power is \(P_i\alpha_i^2/\alpha_i^2 = P_i \), as desired. Note that the channel inversion takes place at the transmitter instead of
the receiver, so the noise power remains as N_0B. Precoding is quite common on wireline multichannel systems like HDSL. There are two main problems with precoding in a wireless setting. First, precoding is basically channel inversion, and we know from Section 6.3.5 that inversion is not power-efficient in fading channels. In fact, an infinite amount of power is needed to do channel inversion on a Rayleigh channel. The other problem with precoding is the need for accurate channel estimates at the transmitter. This same problem is encountered in adaptive modulation.

12.3.3 Adaptive Loading

Adaptive loading is based on the adaptive modulation techniques discussed in Chapter 9. The basic idea is to vary the data rate and power assigned to each subchannel relative to that subchannel gain. As in the case of adaptive modulation, this requires knowledge of the subchannel fading $\{\alpha_i, i = 1, \ldots, N\}$ at the transmitter. We can optimize the power and rate associated with each subchannel to maximize capacity or to maximize the rate of a variable-rate variable-power modulation scheme like MQAM. Let’s first consider the capacity maximization. The capacity of the multichannel system with N subchannels of baseband bandwidth B_N and corresponding subchannel gains $\{\alpha_i, i = 1, \ldots, N\}$ is given by\(^1\):

$$C = \sum_{i=1}^{N} B_N \log \left(1 + \frac{\alpha_i^2 P_i}{N_0 B_N}\right),$$

where we assume a power constraint across subchannels as $\sum_i P_i = \bar{P}$. We would like to find the power P_i to allocate to each subchannel that maximizes this expression. But this is the same optimization problem as in Chapter 4.6. The optimal power allocation is thus the same water-filling given by Equation (4.17):

$$\frac{P_i}{\bar{P}} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma_i} & \gamma_i \geq \gamma_0 \\ 0 & \gamma_i < \gamma_0 \end{cases}$$

for some cutoff value γ_0, where $\gamma_i = \alpha_i^2 \bar{P}/(N_0 B_N)$. The cutoff value is obtained by substituting the power adaptation formula into the power constraint. The capacity then becomes

$$C = \sum_{i=1}^{N} B_N \log (\gamma_i/\gamma_0),$$

Suppose we now apply the variable-rate variable-power MQAM modulation scheme described in Chapter 9 to the subchannels. Then our total data rate will be given by

$$R = B_N \sum_{i=1}^{N} \log(1 + K\gamma_i R_i/\bar{P}),$$

where $K = -1.5/\ln(5\text{BER})$. Optimizing this expression relative to the P_is yields the optimal power allocation

$$\frac{P_i}{\bar{P}} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{K\gamma_i} & \gamma_i \geq \gamma_0/K \\ 0 & \gamma_i < \gamma_0/K \end{cases}$$

\(^1\)This summation is the exact capacity when the α_is are independent. However, in order for the α_is to be independent, the subchannels must be separated by the coherence bandwidth of the channel, which would imply that the subchannels are no longer flat fading. Since the subchannels are designed to be flat-fading, the subchannel gains $\{\alpha_i, i = 1, \ldots, N\}$ will be correlated, in which case the capacity obtained by summing over the capacity in each subchannel is an upper bound on the true capacity. We will take this bound to be the actual capacity, since in practice the bound is quite tight.
and corresponding data rate

\[R = B_N \sum_{i=1, \gamma_i \geq \gamma_0 / K}^{N} \log(K \gamma_i / \gamma_0). \] \hspace{1cm} (12.11)

12.3.4 Coding across Subchannels

The basic idea in coding across subchannels is to encode incoming bits into a length-\(N \) codeword, where \(N \) is the number of subchannels in the multicarrier system. Then if most of the subchannels have a high SNR, the codeword will have most coded bits received correctly, and the errors associated with the few bad subchannels can be corrected. This technique only works well for channels with a large delay spread, where the coherence bandwidth of the channel is on the order of the bandwidth of each subchannel. In that case each subchannel has independent fading, and coding across subchannels provides frequency diversity. However, if the coherence bandwidth of the channel is large, then the fading across subchannels will be highly correlated, which will significantly reduce the effect of coding. Note that coding across subchannels is the only technique discussed in this section that takes advantage of the fact that the data on all the subcarriers can be processed simultaneously. The other techniques discussed in this section are all basically flat-fading compensation techniques, which apply equally to multicarrier systems as well as narrowband flat-fading channels.
Figure 12.4: OFDM with IFFT/FFT Implementation.
Bibliography

Chapter 13

Spread Spectrum and RAKE Receivers

Although bandwidth is a valuable commodity in wireless systems, increasing the transmit signal bandwidth (e.g., with coding) can sometimes improve performance. Spread spectrum is a technique which increases signal bandwidth to reduce ISI and narrowband interference. In conjunction with a RAKE receiver, spread spectrum also provides a form of diversity, called code diversity. Spread spectrum first achieved widespread use in military applications due to its inherent property of “hiding” the signal below the noise floor during transmission, and its resistance to narrowband jamming. Since both of these properties are desirable in wireless systems as well, it has become increasingly pervasive in wireless system designs, and is now one of the two standards for digital cellular in the U.S.

13.1 Spread Spectrum Modulation

Spread spectrum is a modulation technique which increases the transmit signal bandwidth. There are several benefits obtained in exchange for this increased bandwidth. First, spread spectrum modulation mitigates the effect of intersymbol interference (ISI) and narrowband interference. The narrowband interference rejection also applies to hostile jamming signals, and for that reason spread spectrum is often used in military systems. In addition, spread spectrum also “hides” the signal beneath the noise floor. This property means that the transmitted signal is unlikely to be detected (low probability of interceptions, or LPI), another desirable property for military communication systems. Finally, spread spectrum modulation can be used as a multiple access technique, which is the basis of the digital cellular standard IS-95.

There are two common forms of spread spectrum: direct sequence and frequency hopping. Since direct sequence is more commonly used, we will focus on this technique. Frequency-hopping is briefly described in §13.6. In direct sequence spread spectrum modulation, the data signal $s_d(t)$ is multiplied by a pseudorandom sequence $s_p(t) = \pm 1$, where the bit duration T_b is some multiple K of the spreading code bit duration T_c. The spreading code bits are usually referred to as chips. The multiplication of spreading code and BPSK data sequence is illustrated in Figure 13.1.

The pseudorandom sequence is also called the chip sequence, and $1/T_c$ is called the chip rate. Because the chip duration is a fraction K of the bit duration, its 3 dB bandwidth B_c is approximately K times bigger than the original signal bandwidth B_b.\footnote{For square pulses, both the data sequence and the chip sequence have infinite bandwidth. The 3 dB signal bandwidth is defined as the bandwidth where the signal power first reaches half of its maximum value.} Thus, multiplying the data sequence by the spreading code results in the convolution of these two signals in the frequency domain. Thus, the transmitted
signal $s_b(t)s_c(t)$ has frequency response $S(f) = S_b(f) * S_c(f)$, which has a 3 dB bandwidth B of roughly $(K + 1)B_b$.

The spreading factor J is defined as the ratio of the signal bandwidth after spreading B to the original data signal bandwidth B_b. The spread factor is generally approximately equal to the number of chips per bit: $J = B/B_b \approx K$. This factor determines how much interference and multipath rejection occurs at the receiver, as will be discussed in more detail below. The value of J depends both on the signal modulation used and the bandwidth of the spreading code. When the code is modulating a pure RF carrier, the transmitted signal is a sequence of pulses, which has the form of a sinc function in the frequency domain. The approximate transmitted bandwidth for this signal equals the 3 dB bandwidth of the main lobe ($0.88/T_c$). Even when the data signal is not a pure carrier, this value is usually used to approximate the bandwidth of the transmitted signal.

13.2 Pseudorandom (PN) Sequences (Spreading Codes)

The PN sequences are deterministic, with approximately the same number of +1s and -1s, low correlation between shifted versions of the same sequence, and a low cross correlation between different sequences. Thus, although they are deterministic, they have many of the same characteristics as a random binary
sequence of ±1. For this reason they are called pseudorandom sequences.

These sequences are typically generated as a binary sequence of 1s and 0s using a shift register with feedback logic, and then the sequence of 1s and 0s is converted to a pulse train of ±1. The shift register, consisting of \(n \) stages, is illustrated in Figure 13.2. The binary sequence output from the shift register is cyclical with a maximum period of \(2^n - 1 \) cycles.

![Figure 13.2: Generation of PN Sequences](image)

The autocorrelation of the spreading code \(s_c(t) \) over a bit time determines the multipath rejection properties of the spread spectrum signaling. This autocorrelation is defined as

\[
\rho_c(\tau) = \frac{1}{T_b} \int_{t=0}^{T_b} s_c(t)s_c(t-\tau)dt = \frac{1}{K} \sum_{k=1}^{K} s_c(kT_c)s_c(kT_c-\tau).
\]

(13.1)

As will be evident in the analysis below, the best autocorrelation function for multipath rejection is a delta function: \(\rho_c(\tau) = \delta(\tau) \). Unfortunately, we can’t design codes with the autocorrelation equal to a delta function for finite values of \(n \). Much work in spread spectrum in the 60s and 70s was focussed on designing codes with autocorrelation close to a delta function.

Among all linear codes, maximal linear codes were found to have the best autocorrelation properties for ISI rejection. Maximal codes are the longest codes that can be generated by a shift register of a given length. Specifically, the codes have length \(N = 2^n - 1 \) for a binary shift register of length \(n \), so the codes repeat every \(NT_c \) seconds. For maximal codes, the number of negative ones in a sequence \((2^n - 1) \) is approximately equal to the number of ones \((2^n - 1) \), and the statistical distribution of these two chip values doesn’t change over the course of the sequence. This property has some desirable features relative to implementation [1], and also insures maximal spreading (if a sequence of 1s is very long, on the order of \(N \), then the data bit roughly just gets multiplied by 1 and there is no spreading). The autocorrelation function of maximal codes, assuming the number of chips per bit \(K = N \), is given by

\[
\rho_c(\tau) = \begin{cases}
1 - \frac{|\tau|}{NT_c} & |\tau| \leq T_c \\
-1/N & |\tau| > T_c
\end{cases}
\]

(13.2)

Thus, for all delays bigger than a chip time, the correlation value is \(-N = -1/(2^n - 1) \), which decreases exponentially with the size of the spreading sequence \(n \). For delays between \(-T_c\) and \(T_c\), the correlation varies linearly from \(-1/N\) to 1, with the maximum corresponding to zero delay, as illustrated in Figure 13.3. We will see in the next section why this autocorrelation property has good ISI rejection, assuming that \(K = N \). When \(K < N \) the autocorrelation function is not as steep, and thus maximal length codes are not as effective at removing ISI. More details about code properties and design can be found in [1, 2, 3].

253
13.3 Direct Sequence Spread Spectrum

An end-to-end direct sequence spread spectrum system is illustrated in Figure 13.4. The data bits are first modulated to form the baseband data signal \(x(t) = \sum_d d_k g(t - kT) \), where \(g(t) \) is the modulator shaping pulse. This signal is then multiplied by the spreading code \(s_c(t) \) with chip time \(T_c = T_b/K \), and then upconverted through multiplication by the carrier \(\cos 2\pi f_c t \). The spread signal passes through the channel \(h(t) \) which also introduces additive noise \(n(t) \) and narrowband interference \(I(t) \).

The receiver input \(r(t) \) is used to synchronize the PN generator to the spreading code delay \(\tau \) introduced in transmission. This synchronization procedure can be quite complex, especially for ISI channels, and synchronization circuitry makes up a large part of any spread spectrum receiver. Details on synchronization can be found in [1, 3].

Assuming perfect synchronization, the received signal \(r(t) \) is despread by multiplying it with a synchronized version \(s_c(t - \tau) \) of the original spreading code \(s_c(t) \). The value of \(\tau \) will depend on the channel and the synchronizer. If \(h(t) = \delta(t) \), i.e. no multipath is introduced by the channel, then \(\tau = 0 \). However, if the channel introduces multipath, then the synchronizer will generally synchronize either to the strongest multipath component or the first multipath component above a given threshold. Specifically, if \(h(t) = \sum_i \alpha_i \delta(t - \tau_i) \) the synchronizer locks to the strongest multipath component by setting \(\tau = \tau_i \) for \(\alpha_i = \max_j \alpha_j \). It locks to the first component above a given threshold \(\alpha_{\text{thres}} \) by setting \(\tau = \tau_i \) for \(\alpha_i = \min_j : \alpha_j \geq \alpha_{\text{thres}} \). The synchronizer also helps with carrier recovery, and therefore has input to the demodulator also. After despread, the signal \(\hat{x}(t) \) passes through a conventional demodulator and decision device. This baseband recovery of the data signal is identical to the optimal detectors defined in Chapter 5.3 for different linear modulation techniques. Nonlinear (constant envelope) modulation is typically used in conjunction with frequency-hopping spread spectrum. Thus, there are two stages in the receiver demodulation for direct sequence spread spectrum: despread and narrowband demodulation. We now examine these two stages in more detail.

We assume for simplicity that modulator is simple BPSK with rectangular pulse shapes \(g(t) = 1, 0 \leq t \leq T_b \). The matched filter then simply multiplies \(\hat{x}(t) \) by the carrier \(\cos 2\pi f_c t \), then multiplies by \(1/T_b \) and integrates from zero to \(T_b \). The multipath and interference rejection occurs in this demodulation
process. Specifically, the input to the demodulator is given by
\[\hat{x}(t) = [x(t)s_c(t)\cos(2\pi f_c t) * h(t)]s_c(t - \tau) + n(t)s_c(t - \tau) + I(t)s_c(t - \tau). \]
(13.3)

Note that in the absence of multipath \(h(t) = \delta(t) \), the spreading/despreading process has no impact on the baseband signal \(x(t) \). Specifically, the PN code consists of ±1, so multiplying \(s_c(t) \) by an synchronized copy of itself yields \(s_c^2(t) = 1 \) for all \(t \). For \(h(t) = \delta(t) \), the baseband signal component of \(\hat{x}(t) \) is \([x(t)s_c(t)]s_c(t) = x(t) \), since \(s_c^2(t) = 1 \). We assume that the statistics of the noise do not change when it is multiplied by the wideband PN sequence. Therefore, without interference \(I(t) = 0 \) the spreading/despreading process has no impact on performance. We now discuss its interference and multipath rejection properties. We will treat interference and multipath rejection separately: when both are present we can combine the analyses to determine the combined effect.

For narrowband interference rejection, assume \(h(t) = \delta(t) \). Then the synchronizer in Figure 13.4 will have \(\tau = 0 \), yielding
\[\hat{x}(t) = x(t)s_c^2(t) + n(t)s_c(t) + I(t)s_c(t) = x(t) + n'(t) + I(t)s_c(t). \]
(13.4)

Then the demodulator output is given by
\[\hat{d}_k = \frac{1}{T_b} \int_0^{T_b} \hat{x}(t)dt + \frac{1}{T_b} \int_0^{T_b} n(t)s_c(t)\cos(2\pi f_c t)dt + \frac{1}{T_b} \int_0^{T_b} I(t)s_c(t)\cos(2\pi f_c t)dt
= .5d_k + n_k + I_k. \]
(13.5)

Since multiplying an AWGN process by a carrier does not change its statistics, \(n_k \) is an AWGN sample. The narrowband interference rejection is apparent in the last term of (13.5). Specifically, we assume that \(I(t) \) is narrowband (with a bandwidth on the order of \(T_b^{-1} \)), so it will be approximately constant over a bit time \(T_b \). Recall that the spreading sequence \(s_c(t) \) is a sequence of ±1 that changes every chip time \(T_c = T_b/K \). Thus, integrating the product \(I(t)s_c(t) \) over a bit time \(T_b \) will yield approximately zero.

\[^{2}\text{This is not true in general, but is reasonably accurate for analysis purposes, and greatly simplifies the analysis.}\]
Also, the cosine term is changing rapidly relative to $I(t)$ and $s_c(t)$ since $f_c >> T_c^{-1} >> T_b^{-1}$. Therefore, $I_k \approx 0$. The narrowband interference rejection can be seen more precisely in the frequency domain, as shown in Figure 13.5. We see in this figure that when the narrowband interference $I(f)$ is multiplied by the spreading code in the receiver, its bandwidth is increased by the spreading factor $J \approx K$. When this spread interference signal goes through the demodulator, it passes through an integrator or equivalently, a narrowband filter the size of the data signal bandwidth. Thus, all of the spread interference outside the narrowband filter is removed, as shown in Figure 13.5. Thus, the interference power in the demodulator is reduced by approximately a factor of K. The noise is not impacted by the spreading process in the receiver.

![Figure 13.5: Signal and Interference after Despreading](image)

The ISI rejection is even stronger when the spreading code has good autocorrelation properties over a bit time. Let us assume a multipath channel with one delayed component: $h(t) = \alpha_1 \delta(t) + \alpha_2 \delta(t - \tau_0)$. Suppose that the first multipath component is stronger than the second: $\alpha_1 > \alpha_2$, so that the receiver synchronizes to the first component ($\tau = 0$ in Figure 13.4). Then, in the absence of narrowband interference ($I(t) = 0$), we have

$$\hat{x}(t) = \alpha_1 x(t) s_c^2(t) \cos(2\pi f_c t) + \alpha_2 x(t - \tau_0) s_c(t - \tau_0) s_c(t) \cos(2\pi f_c(t - \tau_0)) + n(t)s_c(t).$$ \hspace{1cm} (13.6)

The demodulator output is then given by

$$\hat{d}_k = \frac{1}{T_b} \int_0^{T_b} \alpha_1 d_k s_c^2(t) \cos^2(2\pi f_c t) dt + \frac{1}{T_b} \int_0^{T_b} \alpha_2 d_{k-\tau_0} s_c(t - \tau_0) s_c(t) \cos(2\pi f_c t) \cos(2\pi f_c(t - \tau_0)) dt + \frac{1}{T_b} \int_0^{T_b} n(t)s_c(t) \cos(2\pi f_c t) dt$$

$$\approx 1.5\alpha_1 d_k + 1.5\alpha_2 d_{k-\tau_0} + n_k,$$ \hspace{1cm} (13.7)

where $d_{k-\tau_0}$ is the symbol corresponding to time $t - \tau_0$ and the approximation assumes $f_c >> 1/T_b$. The noise n_k is an AWGN sample as described above. Let us consider the term d_{k0}:

$$d_{k0} = d_{k-\tau_0} \frac{1}{T_b} \int_0^{T_b} s_c(t)s_c(t - \tau_0) \cos(2\pi f_c t) \cos(2\pi f_c(t - \tau_0)) dt$$

$$= d_{k-\tau_0} \frac{1}{T_b} \int_0^{T_b} s_c(t)s_c(t - \tau_0) \cos(2\pi f_c t) \cos(2\pi f_c(t - \tau_0)) dt$$

$$= \alpha_2 d_{k-\tau_0} \cos(2\pi f_c \tau_0) \frac{1}{T_b} \int_0^{T_b} s_c(t)s_c(t - \tau_0) dt$$

256
\[b \deq d_{k-k_0} \cos(2\pi f_c \tau_0) \rho_c(\tau_0), \]

where \(a \) follows from the fact that \(f_c \gg T_c^{-1} \) and \(b \) follows from the definition of \(\rho_c(t) \). We therefore see that the multipath rejection is a direct function of the spreading code autocorrelation. If we assume a maximal length code with \(K = N \) and \(\tau_0 > T_c \), then the multipath term \(d_{k-k_0} \cos(2\pi f_c \tau_0) \rho_c(\tau_0) = -d_{k-k_0} \cos(2\pi f_c \tau_0)/K \), i.e. the power of all multipath components at delays greater than a chip time is reduced by roughly the spreading gain. Since the spreading gain is generally quite large, this effectively removes most of the ISI. There is some constructive and destructive interference from multipath delayed by less than a chip time, which gives rise to Rician fading statistics of the LOS path.

The problem with the above receiver design is that the exact delay of the LOS component is not known. Moreover, the LOS path may not be the strongest path, or it may be blocked entirely. In practice, a spread spectrum receiver has a header with known data which is used to acquire the delay of the spreading code. The acquisition loop steps through the code until it finds the delay which is highly correlated with the incoming signal. It then further refines the delay until it is perfectly synchronized with the incoming signal. The synchronization is continually adjusted throughout data demodulation since, if the receiver code becomes delayed by more than a small fraction of \(T_c \) relative to the transmitted signal code, performance is significantly compromised. The code acquisition and tracking process is the hardest part of implementation in spread spectrum systems. See [1, 3] for detailed design and analysis of this part of the receiver design.

A more complicated receiver can have several branches, with each branch synchronized to a different multipath component (so the time delay of the PN code between branches is \(T_c \)). The receiver determines which branch has the strongest signal, and this signal is passed to the demodulator. This turns out to be the simplest implementation of a RAKE receiver, shown in Figure 13.6 below, where choosing the branch with the strongest signal corresponds to selection diversity. We now describe the general RAKE structure, which can use any of the diversity combining techniques discussed in Chapter 7.

13.4 RAKE Receivers

A RAKE receiver uses the autocorrelation properties of the code to coherently combine all multipath components. The RAKE receiver structure is shown in Figure 13.6. The RAKE is essentially another form of diversity combining, since the spreading code induces a time diversity on the transmitted signal so that independent multipath components separated by more than a chip time can be resolved. Any of the combining techniques discussed in Chapter 7 may be used, although equal gain combining is the most common, since it doesn’t require knowledge of the multipath amplitudes. A more detailed description of the RAKE receiver for the discrete-time multipath channel model with unknown delays and amplitudes can be found in [2]. If we ignore the effects of interference and synchronization errors, and we also assume a steep autocorrelation function which equals zero for codes delayed by more than a chip time and one for codes within a chip time, then performance of the RAKE receiver with \(M \) branches is identical to any other \(M \)-branch diversity technique. Since these assumptions usually hold in practice and spread spectrum is more difficult to implement than other diversity techniques, spread spectrum is not usually used for diversity alone. However, if spread spectrum signaling is chosen for its other benefits, such as its multiuser or interference rejection capabilities, then \(M \) branch diversity comes almost for free.
13.5 Spread Spectrum Multiple Access

In spread spectrum multiple access each user has a unique spreading code assigned to him which is used to modulate his transmitted signal. The users, modulated by their unique spreading codes, all occupy the same bandwidth, so they are superimposed in time and in frequency. However, the receiver can use the properties of the spreading codes to separate out different users. The spreading codes, which can be orthogonal or semi-orthogonal, consist of chip sequences at a much higher rate than the data rate, so the spreading code has a larger bandwidth than the data signal. Hence, modulating the data signal with these spreading codes results in a larger transmit signal bandwidth. However, since signals modulated by different spreading codes can occupy the same bandwidth and still be separated out at the receiver, this technique is bandwidth efficient. In fact, under ideal conditions spread spectrum multiple access with orthogonal codes can accommodate the same number of users as time-division and frequency-division, since all of these techniques provide orthogonal channels between users. Spread spectrum multiple access with semi-orthogonal codes can support more users than these orthogonal techniques, since there is often an infinite number of semi-orthogonal codes that can be assigned to different users. However, with semi-orthogonal codes users interfere with each other, so that although there is no hard limit on the total number of users that can share the channel, if too many users access the channel simultaneously then all users will have poor performance. We thus say that systems with semi-orthogonal codes are “interference-limited.”

13.5.1 Spreading Codes for Multiple Access

Multiple access using direct sequence spread spectrum is accomplished by assigning each user a unique spreading code sequence \(s_{ci}(t) \). As we saw earlier, the autocorrelation function of this code determines
its multipath rejection properties. The autocorrelation, which is typically defined over one symbol time, is given by

\[\rho(\tau) = \frac{1}{T_s} \int_0^{T_s} s_{c_i}(t)s_{c_i}(t - \tau)dt. \]

(13.9)

The cross correlation properties of the code set determine the amount of interference between users. The cross correlation between the codes assigned to user \(i \) and user \(j \) over one symbol time is given by

\[\rho_{ij}(\tau) = \frac{1}{T_s} \int_0^{T_s} s_{c_i}(t)s_{c_j}(t - \tau)dt. \]

(13.10)

Ideally we would like \(\rho(\tau) = \delta(\tau) \) to eliminate multipath and \(\rho_{ij}(\tau) = 0 \ \forall \tau \) to eliminate multiple access (MAC) interference. However, \(\rho_{ij}(\tau) = 0 \ \forall \tau \) only if we have orthogonal codes. Specifically, if we have \(K \) chips per bit we can obtain, using Walsh-Hadamard codes for example [1, 4], exactly \(K \) orthogonal codes (\(\rho_{ij}(\tau) = 0 \ \forall \tau \)). Suppose our information signal has bandwidth \(B \). Since the spreading code with \(K \) chips per bit has a bandwidth expansion of roughly \(K \), each user’s spread signal requires a bandwidth of roughly \(KB \). Since these users share the same spectrum, with orthogonal coding we require a bandwidth of \(K \) times the original signal bandwidth to support \(K \) users. This is the same requirement as frequency-division, so under ideal conditions these two techniques are equivalent. In practical scenarios spread spectrum with orthogonal codes is more susceptible to multipath (since it is a wideband signal) and it is more complex to implement. In addition, multipath in the channel typically compromises the orthogonality of the codes, leading to MAC interference. For these reasons multiple access is not typically implemented using orthogonal spread spectrum coding.

We can accommodate more than \(K \) users in a total bandwidth of \(KB \) using semi-orthogonal codes, but then the signals modulated by these codes cannot be completed separated in the receiver. Thus semi-orthogonal codes exhibit nonzero MAC interference. However, we can design spreading codes to make this interference as small as possible (i.e. \(\rho_{ij}(\tau) \approx 0 \forall \tau \)). In spreading code design there is usually a tradeoff between good multipath rejection properties (\(\rho(\tau) \approx \delta(\tau) \)) and good MAC interference rejection properties (\(\rho_{ij}(\tau) \approx 0 \)). It is difficult to design codes which are good at both multipath and MAC interference rejection.

We can typically get a very large number of semi-orthogonal codes with cross correlation

\[\rho_{ij}(\tau) \triangleq \frac{1}{\sqrt{G}} \approx \frac{1}{\sqrt{J}}, \]

(13.11)

where \(J \) is the bandwidth expansion factor of the codes (the ratio of the spread signal bandwidth to the original signal bandwidth) of the codes. Gold codes are an example of codes with this property [1, 4].

13.5.2 Broadcast Channels

Let us first consider a broadcast channel with semi-orthogonal codes. The transmitter for this system is shown in Figure 13.7 and the channel and receiver in Figure 13.8. In a broadcast channel the signals of all users are sent simultaneously by the transmitter (base station), and each receiver must demodulate its individual signal. Specifically, for a \(K \)-user system the transmitter has \(K \) modulated signals \(s_1(t), \ldots, s_K(t) \) to send to the \(K \) users. Assuming linear modulation these signals are given by

\[s_i(t) = \sum_{l=1}^{\infty} d_{il}g(t - lT_s), \]

(13.12)
where d_{it} is the ith user's symbol over symbol time $[(l-1)T_s, lT_s]$, $g(t)$ is the pulse shape and T_s the symbol time. For simplicity in our analysis we assume a baseband system with binary modulation ($T_s = T_b$) and rectangular pulse shapes. The analysis easily extends to more general linear modulations at passband.

The transmitter consists of K branches, where the ith branch multiplies the ith signal $s_i(t)$ with a semi-orthogonal spreading code $s_{ci}(t)$. The branches are summed together, resulting in the signal

$$x(t) = \sum_{i=1}^{K} s_i(t)s_{ci}(t) \quad (13.13)$$

which is transmitted over the channel.

![Figure 13.7: Broadcast Transmitter.](image)

The signal received by user i first passes through the ith user's channel, which has impulse response $h_i(t)$ and AWGN. Thus the received signal at the ith user's receiver is $x(t) * h_i(t) + n(t)$. This signal is first multiplied by the ith user's spreading code $s_{ci}(t)$, which is perfectly synchronized to the corresponding code in the transmitted signal3. The signal is then integrated over a bit time (symbol time for nonbinary modulation). The output of the integrator is

$$\hat{s}_i(t) + I_i(t) = \hat{d}_i + I_{it}, \quad (13.14)$$

where \hat{d}_i is the demodulated bit from the ith user at time l and I_{it} is the interference from other users over this bit time.

Let us first assume that each user has a channel with no multipath, so $h_i(t) = \alpha_i \delta(t)$. First consider the desired signal component $\hat{s}_i(t) = \hat{d}_i$. We have

$$\hat{s}_i(t) = \frac{1}{T_b} \int_{(l-1)T_b}^{lT_b} [s_i(t)s_{ci}(t) * h_i(t) + n(t)]s_{ci}(t)dt = \alpha_i d_i + n_d = \hat{d}_i, \quad (13.15)$$

3This synchronization is even more difficult than in the single-user case, since it must be done in the presence of multiple spread signals. In fact some spreading code sets are obtained by shifting a single spreading code by some time period. For these systems there must be some control channel to inform the receiver which time shift corresponds to its desired signal. More details on the synchronization for these systems can be found in [1].
where $n_d = \int_{(t-1)T_b}^{tT_b} n(t) s_{c_i}(t) \, dt$ is the noise sample at the output of the integrator at time t. Thus, in the absence of other users, the demodulated bit differs from the original bit due to signal attenuation and noise, as in a single-user channel.

Now consider the interference signal $I_i(t)$. We have

$$I_i(t) = \sum_{j=1}^{K} \frac{1}{T_b} \int_{(t-1)T_b}^{tT_b} [s_j(t) s_{c_j}(t) * h_i(t)] s_{c_i}(t) \, dt = \alpha_i \sum_{j=1}^{K} d_{j,l} \frac{1}{T_b} \int_{(t-1)T_b}^{tT_b} s_{c_j}(t) s_{c_i}(t) \, dt = \alpha_i \sum_{j=1}^{K} \frac{d_{j,l}}{\sqrt{G}} = I_{il},$$

(13.16)

where \sqrt{G} is defined by the cross correlation (13.11). We see that both the interference $I_i(t)$ and signal $s_i(t)$ are attenuated by the path gain α_i, and therefore this path gain has no impact of the receiver signal-to-interference power ratio (SIR)4. In particular, for a transmitted signal power of S the received signal power at the ith receiver is $\alpha_i^2 S$ and the interference power is $I = \alpha_i^2 S (K-1)/G$, so $\text{SIR} = G/(K-1)$. Typically semi-orthogonal code systems are designed for a large number of users, so that $K-1 >> N_0 B/S$. Thus we can typically neglect noise in our performance analysis, since the MAC interference power is much bigger than the noise power. In this case we say that these systems are interference-limited.

Now consider a more general channel $h_i(t) = \sum_{n=1}^{N} \alpha_{in} \delta(t - \tau_{in})$. First consider the desired signal component:

$$\hat{s_i}(t) = \frac{1}{T_b} \int_{(t-1)T_b}^{tT_b} [s_i(t) s_{c_i}(t) * h_i(t) + n(t)] s_{c_i}(t) \, dt$$

$$= \frac{1}{T_b} \int_{(t-1)T_b}^{tT_b} \left(\sum_{n=1}^{N} \alpha_{in} s_i(t - \tau_{in}) s_{c_i}(t - \tau_{in}) s_{c_i}(t) + n(t) s_{c_i}(t) \right) \, dt$$

4The path gain does impact SNR, but noise is typically neglected in analysis of spread spectrum MAC systems, since they tend to be interference-limited.
\[I_i(t) = \sum_{j=1}^{K} \frac{1}{T_b} \int_{(t-1)T_b}^{tT_b} [s_j(t) s_{c_j}(t) * h_i(t)] s_{c_i}(t) dt \]

\[= \sum_{j=1}^{K} \frac{1}{T_b} \int_{(t-1)T_b}^{tT_b} s_{c_i}(t) \left(\sum_{n=1}^{N} \alpha_{in} s_{c_j}(t - \tau_{in}) s_j(t - \tau_{in}) \right) dt \]

\[= \sum_{j=1}^{K} \sum_{n=1}^{N} \alpha_{in} s_j(t - \tau_{in}) \frac{1}{T_b} \int_{(t-1)T_b}^{tT_b} s_{c_i}(t) s_{c_j}(t - \tau_{in}) dt \]

\[= \sum_{j=1}^{K} \sum_{n=1}^{N} \alpha_{in} d_{jl} \rho_{ij}(\tau_{in}) \]

\[= \sum_{j=1}^{K} \sum_{n=1}^{N} \alpha_{in} d_{jl} \frac{1}{\sqrt{G}} \]

\[= I_{il}, \quad (13.18) \]

where we again assume \(\tau_{in} < T_b \), so that \(s_j(t - \tau_{in}) = d_{jl} \) over the \(l \)th bit interval. We see that the interference also experiences fading due to multipath, and the interference power on each path is reduced by the code cross correlation.

13.5.3 Multiple Access Channels

We now consider a multiple access channel (MAC) with semi-orthogonal codes. In a MAC channel each user’s signal is generated by the individual user. These signals pass through the user’s individual channel and are then summed together at the receiver, along with AWGN. Since each signal goes through a different channel, the received interference power can be much larger than the received signal power, as we now show in more detail.

The transmitter and channel for each individual user in a \(K \)-user MAC is shown in Figure 13.9. We assume that the users are synchronized, so that the \(l \)th bit interval is the same for all users (the asynchronous MAC is more complex to analyze, and generally has worse performance than the synchronous MAC). We see from Figure 13.9 that the \(i \)th user generates an information signal \(s_i(t) \). As in the broadcast model above we assume binary linear modulation, a baseband system, and rectangular pulses for \(s_i(t) \), but these assumptions can be generalized without significantly changing the analysis. The \(i \)th user
multiplies his information signal by his spreading code $s_c(t)$ before sending it over his channel, which has impulse response $h_i(t)$. All the user’s signals are summed at the receiver front end and corrupted by AWGN $n(t)$.

![Figure 13.9: MAC Transmitter and Channel.]

The signal entering the MAC receiver is given by

$$x(t) = \left[\sum_{i=1}^{K} s_i(t) s_c(t) * h_i(t) \right] + n(t).$$ \hspace{1cm} (13.19)

The receiver consists of K branches corresponding to the K received signals, as shown in Figure 13.10. The ith branch multiplies the received signal by the ith user’s spreading code $s_c(t)$, which is perfectly synchronized to the corresponding code in the ith user’s transmitter. The signal is then integrated over a bit time (symbol time for nonbinary modulation). The output of the integrator is

$$\hat{s}_i(t) + I_i(t) = \hat{d}_i + I_{il},$$ \hspace{1cm} (13.20)

where \hat{d}_i is the demodulated bit from the ith user at time l and I_{il} is the interference from other users over this bit time.

Assume that each user has a channel with no multipath, so $h_i(t) = \alpha_i \delta(t)$. The desired signal component $\hat{s}_i(t)$ is

$$\hat{s}_i(t) = \frac{1}{T_b} \int_{(l-1)T_b}^{lT_b} [s_i(t)s_c(t) * h_i(t) + n(t)] s_c(t) dt = \alpha_i d_i + n_d = \hat{d}_i,$$ \hspace{1cm} (13.21)

where n_d is the noise sample at the output of the integrator at time l. Thus, in the absence of other users, the demodulated bit differs from the original bit due to signal attenuation α_i and noise, as in a single-user and broadcast channels.

263
Now consider the interference signal $I_i(t)$. We have

$$I_i(t) = \sum_{j=1 \atop j \neq i}^{K} \frac{1}{T_b} \int_{(l-1)T_b}^{lT_b} [s_j(t) s_{c_j}(t) \ast h_j(t)] s_{c_i}(t) dt = \sum_{j=1 \atop j \neq i}^{K} \alpha_j d_{j|i} \frac{1}{T_b} \int_{(l-1)T_b}^{lT_b} s_{c_j}(t) s_{c_i}(t) dt = \sum_{j=1 \atop j \neq i}^{K} \alpha_j d_{j|i} \frac{1}{\sqrt{G}}, \quad (13.22)$$

where α_j is the path gain of the jth user's channel. We see that, in contrast to the broadcast channel, the interference $I_i(t)$ and signal $\hat{s}_i(t)$ are attenuated by different path gains. Therefore, if $\alpha_j >> \alpha_i \forall j \neq i$, the MAC interference can be quite large. In particular, if $\alpha_j = \alpha >> \alpha_i$ for $j \neq i$ we get that for transmitted signal power S the received signal power on the ith branch is $S_i = \alpha_i^2 S$ and the received interference power on this branch is $I_i = \alpha_i^2 (K-1)/G$ leading to an SIR of

$$\frac{S_i}{I_i} = \frac{G\alpha_i^2}{(K-1)\alpha_i^2} \ll \frac{G}{K-1}. \quad (13.23)$$

Since these systems are designed such that $\frac{G}{K-1}$ equals the required SIR for acceptable performance, we see that MAC channel performance can be significantly degraded by path loss.

The solution to this problem is to use power control based on channel inversion, where each user transmits signal power S/α_i^2 so that his received signal power is S_i, regardless of his path loss. This will lead to an SIR of $G/(K-1)$ for each user. The disadvantage of this form of power control is that channel inversion leads to poor channel capacity and can also cause significant interference to adjacent cells in a cellular system. Despite these problems, channel inversion is used on the mobile-to-base connection in the IS-95 cellular system standard.

For more general channels $h_i(t) = \sum_{n=1}^{N} \alpha_m \delta(t-\tau_m)$ the desired signal component, assuming $\tau_m < T_b$,
is the same as in the case of the broadcast channel:

\[\hat{s}_i(t) = \sum_{n=1}^{N} \alpha_{in} d_i \rho(\tau_{in}) + n_i \]

(13.24)

Thus, in the absence of other users, the demodulated bit has fading due to the multipath and the code autocorrelation, as in the single-user and broadcast cases.

Now consider the interference signal \(I_i(t) \) for this more general channel, assuming \(\tau_{jn} < T_b \). We have

\[
I_i(t) = \sum_{j=1}^{K} \sum_{j \neq i} \frac{1}{T_b} \int_{(t-1)T_b}^{tT_b} [s_j(t)s_{cj}(t) * h_j(t)] s_{ci}(t) dt
\]

\[
= \sum_{j=1}^{K} \sum_{j \neq i} \frac{1}{T_b} \int_{(t-1)T_b}^{tT_b} s_{cj}(t) \left(\sum_{n=1}^{N} \alpha_{jn} s_j(t - \tau_{jn}) s_j(t - \tau_{jn}) \right) dt
\]

\[
= \sum_{j=1}^{K} \sum_{j \neq i} \sum_{n=1}^{N} \alpha_{jn} s_j(t - \tau_{jn}) \frac{1}{T_b} \int_{(t-1)T_b}^{tT_b} s_{cj}(t) s_j(t - \tau_{jn}) dt
\]

\[
= \sum_{j=1}^{K} \sum_{j \neq i} \sum_{n=1}^{N} \alpha_{jn} d_{ij} \rho_{ij}(\tau_{jn})
\]

\[
= \sum_{j=1}^{K} \sum_{j \neq i} \frac{\alpha_{jn} d_{ij}}{\sqrt{G}}.
\]

(13.25)

We see that the interference also experiences fading due to multipath, with path gains that are different from those on the desired signal component. The interference power on each path is reduced by the code cross correlation.

13.5.4 Multiuser Detection

Interference signals in spread spectrum multiple access need not be treated as noise. If the spreading code of the interference signal is known, then that signal can be detected and subtracted out. Alternatively, the received signal can be projected onto a subspace that is orthogonal to the direction of the interfering signal. Multiuser detection is an active field of research in the spread spectrum area. The optimal multiuser detector was obtained by Verdu based on the Viterbi algorithm. Unfortunately, this algorithm has exponential complexity in the number of users, and also requires channel knowledge. Simpler multiuser detection algorithms include the decorrelating detector and the successive interference canceller. A good overview of multiuser detection can be found in [5] and a more systematic treatment in [6]. Recent work in this area for ISI channels is described in [7].

13.6 Frequency-Hopping

Frequency-hopping uses the same idea of bandwidth spreading and diversity as in direct sequence, however the diversity is in frequency rather than in time. Specifically, if the data signal has bandwidth \(B_1 \) and bandwidth \(B_t \) is available for signal transmission, then \(B_t \) is divided into equally spaced channels of bandwidth \(B \) with corresponding center frequency \(f_i \). The data signal is then transmitted, or
hopped, over the different carrier frequencies, with the carrier frequency changing every T_c seconds. The sequence of carrier frequencies is determined by a pseudorandom sequence. The receiver must lock to the pseudorandom sequence, then use a frequency synthesizer to demodulate the narrowband signal at the appropriate carrier. Frequency-hopping has the same interference rejection capability as direct-sequence, since the signal only occupies the interference bandwidth for a short period of time. It is also resistant to frequency-selective fading, since the signal hops over many frequency bands, thus the channels with deep nulls are averaged out. A more detailed description of frequency-hopping and its fading and interference immunity can be found in [3, 8]. Slow frequency-hopping is also used in cellular systems to average out interference from other cells. Frequency-hopping has some benefits over direct-sequence in multiuser systems, and it can also be easily combined with narrowband signaling techniques, as in the GSM system.
Bibliography

Chapter 14

Multiuser Systems

The topics covered up until now deal with communication techniques for a single user. In multiuser systems the system resources (power, bandwidth, etc.) must be divided among the multiple users. In addition, since bandwidth is a precious resource, systems can take advantage of the signal power falloff with distance to reuse bandwidth at spatially-separate locations. The concept of frequency reuse is the fundamental technology underlying cellular system design, which are dealt with in the next chapter. In this chapter we discuss channelization methods for multiuser systems (time-division, frequency-division, and code-division). We then develop the fundamental capacity limits of multiuser broadcast and multiple access channels under these different channelization methods. We also discuss random multiple access techniques (random access) and scheduling.

14.1 Multiuser Channels: Broadcast and Multiple Access

A multiuser channel refers to any channel which must be shared among multiple users. There are two different types of multiuser channels: the broadcast channel and the multiple access channel, which are illustrated in Figure 14.1. A broadcast channel has one transmitter sending to many receivers, and thus the bandwidth and power of the transmitter must be divided accordingly. Examples of broadcast channels include all radio and television transmissions, the downlink (satellite-to-earth station) of a satellite system, and the base station-to-mobile transmission of a cellular system. A multiple access channel has many transmitters sending signals to one receiver. The transmit power for each of the transmitters may vary, but the receiver bandwidth must be divided among the different users. Examples of multiple access channels include an Ethernet connected to many computers, standard telephone lines (which are time multiplexed between many voice signals), and the mobile-to-base station transmission of cellular systems. The goal of multiuser communications is to utilize the limited system resources (power and bandwidth) in an efficient manner while creating minimal (no) interference between users.

The most important system resource to be divided is the signal bandwidth, since the bandwidth is assigned by the FCC, and is usually scarce (or expensive). The bandwidth is typically divided into channels using a channelization method based on time, frequency, or code division, discussed in more detail below. When dedicated channels are allocated to users it is often called multiple access: since voice signals require a dedicated channel, multiple access is the common model for channel allocation in telephony systems. Bandwidth sharing for users with bursty transmissions generally use some form of random channel allocation which does not guarantee channel access. Bandwidth sharing using random channel allocation is called random multiple access or simply random access. In general, the choice of whether to use multiple access or random access, and which channelization technique to use for each access.
14.2 Multiple Access

Multiple access techniques use a channelization method to divide up the system resources and then assign dedicated channels to users that access the system. The channels are created by an orthogonal or semi-orthogonal division of the system resources. Channelization methods for multiple access can be applied to either broadcast or multiple access channels, although the relative performance of the different bandwidth division techniques are different for these two channel types. Methods to divide the spectrum include frequency-division, time-division, code-division, and hybrid combinations of these methods. Code division can use either orthogonal or semiorthogonal coding techniques. Theoretically, time-division frequency-division, and orthogonal code division are equivalent for homogeneous users (equal power and bandwidth requirements), since they all divide up the signal space orthogonally [1]. Thus, as we will see in Sections 14.3 and 14.4, the capacity region for all of these techniques is the same. These sections also demonstrates that code division using semiorthogonal codes achieves higher user rates if multiuser detection is used. However, if multiuser detection is not used, the achievable rates are lower than that of the other orthogonal techniques. We now describe each of these division techniques in more detail. More thorough treatments of channelization methods can be found in [2, 3] and the references therein.

14.2.1 Frequency Division

In frequency division, the bandwidth is divided into nonoverlapping channels. Each user is then assigned a different channel for transmission and reception. In time division, time is divided into orthogonal time slots, which are then allocated to the different users. The channels typically have a guard band between them to compensate for imperfect filters, adjacent channel interference, and spectral spreading due to Doppler. In frequency division the user channels are typically narrowband, so they experience flat fading and do not require compensation techniques for ISI. Frequency-division is generally the simplest division technique to implement, however it is rather inflexible. In particular, it is difficult to allocate multiple
channels on demand to a single user, since it requires simultaneous demodulation of multiple narrowband channels. Frequency division is used in most analog cellular systems, and is part of the standard. In some sense, all systems can be considered to use frequency division, since they are only allocated a finite amount of bandwidth.

14.2.2 Time-Division

In time-division, time is divided into orthogonal time slots, and each user is assigned a cyclically-repeating timeslot for transmission, and another one for reception. Time-division is often combined with frequency division, as in the GSM standard. Since each user occupies a cyclically-repeating timeslot, transmission is not continuous. Therefore, digital transmission techniques which allow for buffering are required. The fact that transmission is not continuous makes handoff simpler, since the handoff can be done during the timeslots occupied by other users. In addition, the channel can be sensed by the transmitter during idle times, which allows the mobile to assist in determining which base station it should be handed off to. One difficulty of using time-division in the multiple access channel is synchronization. Since different users in the multiple access channel have different time delays, the timeslots must be synchronized so that they remain orthogonal after these respective delays. The user channels associated with a time-division system can be wideband or narrowband depending on the total system bandwidth and whether or not frequency-division is also used. If the channels are wideband, then typically some form of ISI compensation is required. For example, in the IS-54 standard, the channels are roughly 30KHz, and no equalization is used. Conversely, in GSM, the channels are roughly 200KHz, and equalization is required for acceptable performance.

14.2.3 Code-Division

In code-division, time and bandwidth are used simultaneously by different users, modulated by orthogonal or semi-orthogonal codes. The receiver then uses the code structure to separate out the different users. One of the big advantages of spread spectrum is that little dynamic coordination of users in time or frequency is required, since the users can be separated by the code properties alone. In addition, since time and frequency division carve up time and bandwidth in N orthogonal pieces, there is a hard limit of N on how many users can simultaneously occupy the system. This is also true for code-division using orthogonal codes. However, if semi-orthogonal codes are used, the number of users is interference limited. Specifically, there is no hard limit on how many users can simultaneously share the channel. However, because semi-orthogonal codes can cause mutual interference to other users sharing the same bandwidth, the more users that are packed into the same channel, the higher the level of interference, which degrades the performance of all the users. Moreover, on multiple access channels, a semiorthogonal code-division system requires power control to compensate for the near-far problem. The near-far problem arises because users modulating their signal with different spreading codes interfere with each other. Suppose that one user is very close to his base station, and another user very far away. If both users transmit at the same power level, then the interference from the close user will swamp the signal from the far user. Thus, power control is used on all users such that their received signal powers are roughly the same. This form of power control, which essentially inverts any attenuation and/or fading on the channel, causes each interferer to contribute an equal amount of power, thereby eliminating the near-far problem.

Code-division is the most complex bandwidth division technique due to code synchronization requirements and power control. Code division for direct-sequence spread spectrum was discussed in the previous chapter. Although code-division with multiuser detection does not require power control, receiver complexity is significantly increased when simultaneous detection of all users is required. Moreover,
the detection scheme must have a low probability of bit error, since bits that are incorrectly detected are subtracted from the signals of other users, which may cause them to be decoded in error as well. A similar feedback error problem is found in decision-feedback equalizers.

14.2.4 Standards Debate

Commercially, the primary competing standards in the U.S. for cellular and PCS multiple access are frequency-division (IS-54), spread spectrum code-division (IS-95), or a combination of time-division and slow frequency hopping (GSM). The spread spectrum systems do not currently use multiuser detection, and therefore they require stringent power control to maintain a constant received signal power at the receiver for each of the users. If this constant power is not maintained, co-channel interference from strong signals will degrade the quality of other signals (the near-far problem). Stringent power control is difficult to maintain in a fading environment, and is one of the major challenges of spread spectrum multiple access.

The debate among cellular and personal communication standards committees and equipment providers over which approach to use has led to countless analytical studies claiming superiority of one technique over the other [4, 5, 6]. In many cases the a priori assumptions used in these analyses bias the results in favor of one technique over the other alternatives; usually the technique that is of some economic interest to the authors of the study.

This debate about multiple access was primarily for voice systems. Data and mixed media systems pose different challenges, and analysis based on multiple access for voice systems is not necessarily valid for data and multimedia systems. The best multiple or random access technique in this case will depend on the traffic statistics.

14.3 Broadcast Channel Capacity Region

When several users share the same channel, the channel capacity can no longer be characterized by a single number. At the extreme, if only one user occupies the channel then the single-user capacity results of the previous section apply. However, since there is an infinite number of ways to “divide” the channel between many users, the multiuser channel capacity is characterized by a rate region, where each point in the region is a vector of achievable rates that can be maintained by all the users simultaneously. The union of all achievable rate vectors is called the capacity region of the multiuser system.

In this section we analyze the capacity region of a broadcast channel with AWGN and with fading. We begin by first reviewing results from [12] for the AWGN broadcast channel capacity region using superposition code-division with successive interference cancellation, time-division, and frequency-division. We then extend the code-division analysis to direct sequence spread spectrum for both orthogonal and nonorthogonal codes, and obtain the corresponding capacity regions both with and without interference cancellation. We then extend these results to fading broadcast channels.

We will see that the maximum capacity region is achieved using superposition code-division with interference cancellation. In addition, spread spectrum code division with successive interference cancellation has a capacity penalty relative to superposition coding which increases with spreading gain. Finally, spread spectrum with orthogonal code division can achieve a subset of the time-division and frequency-division capacity regions, but spread spectrum with nonorthogonal coding and no interference cancellation is inferior to all the other spectrum-sharing techniques.
14.3.1 The AWGN Broadcast Channel Model

The broadcast channel consists of one transmitter sending independent information to different receivers over a common channel. Thus, it does not model a typical FM radio or TV broadcast channel, where the same signal is received by all users. The capacity region of the broadcast channel characterizes the rates at which information can be conveyed to the different receivers simultaneously. We only consider capacity regions for the two-user broadcast channel, since the general properties and the relative performance of the different spectrum-sharing techniques are the same when the number of users is increased [13]. That is because the transmit distribution for each user which achieves the multiuser capacity region is Gaussian [12], so interference from other users is accurately modeled as Gaussian noise even for a small number of interferers.

We will use the following notation. The two-user broadcast channel has one transmitter and two distant receivers receiving data at rate R_i, $i = 1, 2$. Each receiver has front-end AWGN of noise density n_i, $i = 1, 2$, and we arbitrarily assume $n_1 \leq n_2$. We denote the transmitter's total average power and bandwidth by S and B, respectively.

If the transmitter allocates all the power and bandwidth to one of the users, then clearly the other user will have a rate of zero. Therefore, the set of simultaneously achievable rates (R_1, R_2) includes the pairs $(C_1, 0)$ and $(0, C_2)$, where

$$C_i = B \log \left[1 + \frac{S}{n_i B} \right].$$

These two points bound the broadcast capacity region. We now consider rate pairs in the interior of the region, which are achieved using more equitable methods of dividing the system resources.

14.3.2 Capacity Region in AWGN under TD, FD, and CD

In time-division, the transmit power S and bandwidth B are allocated to user 1 for a fraction τ of the total transmission time, and then to user 2 for the remainder of the transmission. This time-division scheme achieves a straight line between the points C_1 and C_2, corresponding to the rate pairs

$$\bigcup \left(R_1 = \tau C_1, R_2 = (1 - \tau) C_2 ; \ 0 \leq \tau \leq 1 \right).$$

This equal-power time-division capacity region is illustrated in Figures 14.3 and 14.4. In these figures, $n_1 B$ and $n_2 B$ differ by 3dB and 20dB, respectively. This dB difference is a crucial parameter in comparing the relative capacities of the different spectrum-sharing techniques, as we discuss in more detail below.

If we also vary the average transmit power of each user then we can achieve a larger capacity region. Let S_1 and S_2 denote the average power allocated to users 1 and 2 over their respective time slots. The average power constraint then becomes $\tau S_1 + (1 - \tau) S_2 = S$. The capacity region with this power allocation is then

$$\bigcup \left(R_1 = \tau B \log \left[1 + \frac{S_1}{n_1 B} \right], R_2 = (1 - \tau) B \log \left[1 + \frac{S_2}{n_2 B} \right] ; \ \tau S_1 + (1 - \tau) S_2 = S, \ 0 \leq \tau \leq 1 \right).$$

We will see in the following section that the rate region defined by (14.3) is the same as the frequency-division capacity region.

In frequency-division the transmitter allocates S_i of its total power S and B_i of its total bandwidth B to user i. The power and bandwidth constraints require that $S_1 + S_2 = S$ and $B_1 + B_2 = B$. The set of achievable rates for a fixed frequency division (B_1, B_2) is thus

$$\bigcup \left(R_1 = B_1 \log \left[1 + \frac{S_1}{n_1 B_1} \right], R_2 = B_2 \log \left[1 + \frac{S_2}{n_2 B_2} \right] ; \ S_1 + S_2 = S \right).$$

273
It was shown by Bergmans [13] that, for \(n_1 \) strictly less than \(n_2 \) and any fixed frequency division \((B_1, B_2)\), there exists a range of power allocations \(\{S_1, S_2 : S_1 + S_2 = S\} \) whose corresponding rate pairs exceed a segment of the equal-power time-division line (14.2).

The frequency-division rate region is defined as the union of fixed frequency-division rate regions (14.4) over all bandwidth divisions:

\[
\bigcup \left\{ R_1 = B_1 \log \left[1 + \frac{S_1}{n_1 B_1} \right], R_2 = B_2 \log \left[1 + \frac{S_2}{n_2 B_2} \right] \right\}; \quad S_1 + S_2 = S, \quad B_1 + B_2 = B \bigg\} . \tag{14.5}
\]

It was shown in [13] that this capacity region exceeds the equal-power time-division rate region (14.2). This superiority is indicated by interpolating the fixed frequency-division regions in Figures 14.3 and 14.4, although it is difficult to see in Figure 14.3, where the users have a similar received SNR. In fact, when \(n_1 = n_2 \), (14.5) reduces to (14.2) [13]. Thus, optimal power and/or frequency allocation is more beneficial when the users have very disparate channel quality.

Note that the rate region for time-division with unequal power allocation given by (14.3) is the same as the frequency-division rate region (14.5). This is seen by letting \(B_1 = \tau B \) and \(\sigma_i = \tau_i S_i \) in (14.3), where \(\tau_1 = \tau \) and \(\tau_2 = 1 - \tau \). The power constraint then becomes \(\sigma_1 + \sigma_2 = S \). Making these substitutions in (14.3) yields

\[
\bigcup \left\{ R_1 = B_1 \log \left[1 + \frac{\sigma_1}{n_1 B_1} \right], R_2 = B_2 \log \left[1 + \frac{\sigma_2}{n_2 B_2} \right] \right\}; \quad \sigma_1 + \sigma_2 = S \bigg\} . \tag{14.6}
\]

Comparing this with (14.4) we see that with appropriate choice of \(S_i \) and \(\tau_i \), any point in the frequency-division rate region can also be achieved through time-division with unequal power allocation.

Superposition coding with successive interference cancellation, described in more detail in [12], is a multiresolution coding technique whereby the user with the more favorable channel can distinguish the fine resolution of the received signal constellation, while the user with the worse channel can only distinguish the constellation’s coarse resolution. An example of a two-level superposition code constellation taken from [18] is 32-QAM with embedded 4-PSK, as shown in Figure 14.2. In this example, the transmitted constellation point is one of the 32-QAM signal points chosen as follows. The user with the worse SNR provides 2 bits to select one of the 4-PSK superpoints. The user with the better SNR provides 3 bits to select one of the 8 constellation points surrounding the selected superpoint. After transmission through the channel, the user with the better SNR can easily distinguish the quadrant in which the constellation point lies. Thus, the 4-PSK superpoint is effectively subtracted out by this user. However, the user with the worse channel cannot distinguish between the 32-QAM points around its 4-PSK superpoints. Thus, the 32-QAM modulation superimposed on the 4-PSK modulation appears as noise to this user. These ideas can be easily extended to multiple users using more complex signal constellations. Since superposition coding achieves multiple rates by expanding its signal constellation, it does not typically require bandwidth expansion.

The two-user capacity region using superposition coding and successive interference cancellation was derived in [13] to be the set of rate pairs

\[
\bigcup \left\{ R_1 = B \log \left[1 + \frac{S_1}{n_1 B} \right], R_2 = B \log \left[1 + \frac{S_2}{n_2 B + S_1} \right] \right\}; \quad S_1 + S_2 = S \bigg\} . \tag{14.7}
\]

The intuitive explanation for (14.7) is the same as for the example discussed above. Since \(n_1 < n_2 \), user 1 correctly receives all the data transmitted to user 2. Therefore, user 1 can decode and subtract out user 2’s message, then decode its own message. User 2 cannot decode the message intended for user 1, since it has a less-favorable channel; thus, user 1’s message, with power \(S_1 \), contributes an additional noise
term to user 2’s received message. This same process is used by the successive interference canceller in spread spectrum systems [19]. However, it is important to mention that although successive interference cancellation achieves the capacity region (14.7), it is not the best method to use in practice. The capacity analysis assumes perfect signal decoding, whereas real systems exhibit some decoding error. This error leads to decision-feedback errors in the successive interference cancellation scheme. Thus, cancellation methods which mitigate the effect of decision errors work better in practice than successive cancellation.

The rate region defined by (14.7) was shown in [20] to exceed the regions achievable through either time- or frequency-division, when \(n_1 < n_2 \). Moreover, it was also shown in [20] that this is the maximum achievable set of rate pairs for any type of coding and spectrum sharing, and thus (14.7) defines the capacity region. However, if the users all have the same SNR, then this capacity region collapses to the equal-power time-division line (14.2). Thus, when \(n_1 = n_2 \), all the spectrum-sharing methods have the same rate region.

Code-division can also be implemented using direct-sequence spread spectrum, as discussed in Chapter 12.5. As we discussed there, spread spectrum multiplies the modulated data signal by a spreading code, which increases the transmit signal bandwidth by a factor \(G \) called the spreading gain. For orthogonal spreading codes, the cross correlation between the respective codes is zero, and these codes require a spreading gain of \(N \) to produce \(N \) orthogonal codes. For a total bandwidth constraint \(B \), the information bandwidth of each user’s signal with these spreading codes is thus limited to \(B/N \). The two-user rate region with these spreading codes is then

\[
\left\{ \left(R_1 = \frac{B}{2} \log \left[1 + \frac{S_1}{n_1 B/2} \right], \quad R_2 = \frac{B}{2} \log \left[1 + \frac{S_2}{n_1 B/2} \right] \right) : \quad S_1 + S_2 = S \right\}.
\]

Comparing (14.8) with (14.4) we see that code-division with orthogonal coding is the same as fixed frequency-division with the bandwidth equally divided \((B_1 = B_2 = B/2) \). From (14.6), time-division with unequal power allocation can also achieve all points in this capacity region. Thus, orthogonal code-division with Hadamard-Walsh functions achieves a subset of the time-division and frequency-division capacity regions. More general orthogonal codes are needed to achieve the same region as these other techniques.

We now consider spread spectrum with nonorthogonal spreading codes. As discussed in the previous chapter, these codes are commonly generated using maximal length shift registers, which yield a code

Figure 14.2: 32-QAM with embedded 4-PSK
cross correlation of approximately $1/G$. Thus, interference between users is attenuated by a factor of G. Since the signal bandwidth is also increased by this factor, the two-user rate region achievable through spread-spectrum using maximal length spreading codes and successive interference cancellation is given by

$$\left\{ R_1 = \frac{B}{G} \log \left[1 + \frac{S_1}{n_1 B/G} \right], \quad R_2 = \frac{B}{G} \log \left[1 + \frac{S_2}{n_2 B/G + S_1/G} \right]; \quad S_1 + S_2 = S \right\}. \quad (14.9)$$

By the convexity of the log function, the rate region defined by (14.9) for $G > 1$ is smaller than the rate region (14.7) obtained using superposition coding, and the degradation increases with increasing values of G. This implies that for nonorthogonal coding, the spreading gain should be minimized in order to maximize capacity.

With maximal length spreading coding and no interference cancellation, the receiver treats all signals intended for other users as noise, resulting in the rate region

$$\left\{ R_1 = \frac{B}{G} \log \left[1 + \frac{S_1}{n_1 B/G + S_2/G} \right], \quad R_2 = \frac{B}{G} \log \left[1 + \frac{S_2}{n_2 B/G + S_1/G} \right]; \quad S_1 + S_2 = S \right\}. \quad (14.10)$$

Again using the log function convexity, $G = 1$ maximizes this rate region, and the rate region decreases as G increases. Moreover, by taking the second partial derivatives in (14.10), we get that for any $G \geq 1$,

$$\frac{\partial^2 R_2}{\partial^2 R_1} = \frac{\partial R_1}{\partial \alpha_1} \frac{\partial^2 R_2}{\partial^2 \alpha_1} - \frac{\partial R_2}{\partial \alpha_1} \frac{\partial^2 R_1}{\partial^2 \alpha_1} \geq 0. \quad (14.11)$$

Thus, the rate region for nonorthogonal coding without interference cancellation (14.18) is bounded by a convex function with end points C_1 and C_2, as shown in Figures 14.3 and 14.4. Therefore, the capacity region for nonorthogonal code-division without interference cancellation will lie beneath the regions for time-division and frequency-division, which are bounded by concave functions with the same endpoints.

While the orthogonality of time-division and frequency-division is relatively robust against small multipath delays introduced by the channel, multipath delays bigger than a chip time can compromise the orthogonality of orthogonal spread spectrum codes. This loss of orthogonality causes interference noise between users, so the rate region becomes

$$\left\{ R_1 = \frac{B}{G} \log \left[1 + \frac{S_1}{n_1 B/G + S_2/G'} \right], \quad R_2 = \frac{B}{G} \log \left[1 + \frac{S_2}{n_2 B/G + S_1/G'} \right]; \quad S_1 + S_2 = S \right\}, \quad (14.12)$$

where $1/G'$ equals the code cross correlation with multipath. If $G' \approx G$ then the rate region defined by (14.12) is approximately the same as (14.10). As the multipath effect diminishes, $G' \to \infty$ and the region converges to (14.8). A deeper discussion of multipath impact on spread spectrum coding and techniques to improve orthogonality in the presence of multipath can be found in Section 12.5.

The rate regions for equal-power time-division (14.2), frequency-division (14.4), orthogonal code-division (14.8), and nonorthogonal code-division with (14.7) and without (14.10) interference cancellation are illustrated in Figures 14.3 and 14.4, where the SNR between the users differs by 3dB and 20dB, respectively. For the calculation of (14.10) we assume code-division through superposition coding with $G = 1$: spread spectrum code-division with larger values of the spreading gain will result in a smaller rate region.

14.3.3 Fading Broadcast Channel Capacity

We now combine the capacity analysis in $\S 2.2$ for the single-user fading channel with the capacity region analysis in $\S 2.3$ to obtain the capacity region of the fading broadcast channel. The two-user broadcast
Figure 14.3: Two-User Capacity Region: 3dB SNR Difference.

Figure 14.4: Two-User Capacity Region: 20dB SNR Difference.
channel with fading and AWGN has one transmitter with average power S and bandwidth B and two receivers with noise density N_j and time-varying received SNR $\gamma_j[i] = Sg_j[i] / (N_j B), j = 1, 2$. Let $n_j[i] = N_j / g_j[i]$, so $\gamma_j[i] = S/(n_j[i] B)$. We assume that $n_j[i]$ is known to the jth receiver at time i and that both $n_1[i]$ and $n_2[i]$ are known to the transmitter at time i. Thus, the transmitter can vary its power $S[i]$ relative to $n_1[i]$ and $n_2[i]$, subject only to the average power constraint S. For frequency-division, it can also vary the bandwidth $B_j[i]$ allocated to each user, subject to the constraint $B_1[i] + B_2[i] = B$ for all i.

Since time-division allocates orthogonal time slots to each user, the two-user channel with time-division reduces to two orthogonal time-varying single-user channels. Thus, we can apply the single-user capacity results in §4.2 to each of the two channels. This yields the rate region

$$\left\{ \sum (R_1 = \tau C_1[S, B], R_2 = (1-\tau)C_2[S, B]) ; \quad 0 \leq \tau \leq 1 \right\},$$

(14.13)

where $C_i[S, B], i = 1, 2$, is given by (5.22), (5.23), or (5.24), depending on the power adaptation strategy. Clearly, the capacity region is achieved using (5.22) for $C_i[S, B]$ with the corresponding power adaptation (5.24). If the average power allocated to each user is different, the capacity region becomes

$$\left\{ \sum (R_1 = \tau C_1[S_1, B_1], R_2 = (1-\tau)C_2[S_2, B_2]) ; \quad \tau S_1 + (1-\tau)S_2 = S, \quad 0 \leq \tau \leq 1 \right\}.$$

(14.14)

As for the AWGN channel, the unequal-power time-division rate region (14.14) is equivalent to the fixed frequency-division rate region (14.15) obtained below.

Fixed frequency division divides the total channel bandwidth B into nonoverlapping segments of width B_1 and B_2, which also reduces the two-user channel to independent single-user channels. As in the time-division case, we can thus apply the results of §4.2 to each channel independently, yielding the fixed frequency-division rate region

$$\left\{ \sum (R_1 = C[S_1, B_1], R_2 = C[S_2, B_2]) ; \quad S_1 + S_2 = S \right\}.$$

(14.15)

Again, $C[S_i, B_i]$ is given by (5.22), (5.23), or (5.24), with (5.24) achieving the maximum capacity region. Setting $B_1 = \tau B$ and $S_1 = \tau S$ in (14.15) and comparing with (14.14) shows the equivalence of unequal-power time-division and fixed frequency-division on the fading channel. It is clear that the equal-power time-division capacity region (14.13) will exceed the fixed frequency-division rate region over some range of power allocations $\{S_1, S_2 : S_1 + S_2 = S\}$, in particular when all of the power is allocated to one of the frequency bands. Suppose, however, that both the power and the bandwidth partition vary at each transmission based on the instantaneous noise densities $n_1[i]$ and $n_2[i]$. Clearly the resulting rate region will exceed both fixed frequency-division and time-division, which fixes the allocation of these resources over all time. The rate region for this variable power and bandwidth allocation scheme is

$$\left\{ \sum (R_1 = \int_k C_1[k][S_1[k, B_1[k]]p_k, R_2 = \int_k C_2[k][S_2[k, B_2[k]]p_k) ; B_1[k] + B_2[k] = B, \int_k (S_1[k] + S_2[k])p_k = S \right\},$$

(14.16)

where p_k denotes the joint noise density distribution $p_k = p(n_1[i] = n_{1,k}, n_2[i] = n_{2,k})$, $S_{j,k}$ and $B_{j,k}$ are the bandwidth and power allocated to user j when $n_{j}[i] = n_{j,k}$, and $C_j[k][S_j[k, B_j[k]] = B_j[k] \log(1 + S_{j,k} / (n_{j,k}B_{j,k})$. To determine the boundary region of (14.16), both the power and bandwidth allocations must be optimized jointly over time, so the two users are no longer independent. Finding this boundary region requires an exhaustive search or a multidimensional optimization over time subject to the bandwidth and power constraints. We do not evaluate this region in the numerical results presented below. However, this capacity region is bounded above by the capacity region for superposition coding with
successive decoding and bounded below by the union of all fixed frequency-division regions, which are evaluated in Figure 14.5.

The idea of reallocating bandwidth and power as the channel varies is closely related to dynamic channel allocation, where channel allocation is based on the noise (and interference) levels in a particular frequency band [5, 24]. The frequency allocation of (14.16) suggests that instead of using a threshold level to determine which user should occupy the channel, the channel should be allocated to the user which gets the most capacity from it. Similar ideas are currently being investigated for admission control [25].

We now consider code division techniques. We first study superposition coding with successive interference cancellation where, at each transmission, the signal constellation is optimized relative to the instantaneous noise densities \(n_1[i] \) and \(n_2[i] \). In particular, the user with the lower noise density \(n_j[i] \) at time \(i \) will subtract the interference caused by the other user. The rate region is thus the average of the rate regions in AWGN weighted by the joint probability of the noise densities:

\[
\left\{ \bigcup_k \left[R_1 = \int_k B \log \left[1 + \frac{S_{1,k}}{n_{1,k}B + S_{2,k}1[n_{1,k} \geq n_{2,k}]} \right] \pi_k, R_2 = \int_k B \log \left[1 + \frac{S_{2,k}}{n_{2,k}B + S_{1,k}1[n_{2,k} > n_{1,k}]} \right] \pi_k \right] ; \int_k (S_{1,k} + S_{2,k}) \pi_k = S \right\},
\]

where \(1[x] \) denotes the indicator function (\(1[x] = 1 \) if \(x \) is true and zero otherwise). Since superposition coding with interference cancellation has a larger rate region than time- and frequency-division on the AWGN channel, we expect this to be true for the fading channel as well. Indeed, consider any rate point in the frequency-division capacity region (14.16). Associated with that point will be a set of frequency divisions \((B_{1,k}, B_{2,k}) \) and a set of transmit power values \((S_{1,k}, S_{2,k}) \) corresponding to each noise pair \((n_{1,k}, n_{2,k}) \). Let \(S_k = S_{1,k} + S_{2,k} \). From §??, for the broadcast channel with noise density values \((n_{1,k}, n_{2,k}) \) there exists a superposition code with total power \(S_k \) that has a larger capacity region than frequency-division. Since we can find such a dominating code for all pairs of noise density values, the weighted integral of the superposition rates over all joint noise density pairs will exceed the frequency-division capacity region of (14.16).

The rate region for superposition coding without successive decoding is given by

\[
\left\{ \bigcup_k \left[R_1 = \int_k B \log \left[1 + \frac{S_{1,k}}{n_{1,k}B + S_{2,k}} \right] \pi_k, R_2 = \int_k B \log \left[1 + \frac{S_{2,k}}{n_{2,k}B + S_{1,k}} \right] \pi_k \right] ; \int_k (S_{1,k} + S_{2,k}) \pi_k = S \right\}.
\]

Since the capacity region corresponding to each \(k \) term in the integral (14.18) is bounded by a convex function, the resulting rate region will also be bounded by a convex function. Thus, both the equal-power time-division rate region (14.13) and the frequency-division rate region (14.16), which are bounded by concave functions with the same endpoints, will have larger rate regions than that of (14.18).

Obtaining the code division capacity region boundaries either with or without interference cancellation requires either an exhaustive search or a two-dimensional optimization of the power over all time. However, we can obtain a simple lower bound for these boundaries by keeping the transmit power constant. This yields a point in the capacity region which is clearly beneath rate vectors obtained with optimal power adaptation. The resulting capacity region lower bound for Rayleigh fading is shown in Figure 14.5, along with the time-division and fixed frequency-division rate regions, given by (14.13) and (14.15) respectively. From this figure we see that keeping the transmit power constant is clearly sub-optimal, since the equal-power time-division rate region exceeds the region obtained by superposition
code-division with interference cancellation near the region end points. In light of this observation, it is interesting to recall our remark in \S3.7 that keeping the transmit power constant has a negligible impact on the capacity of a single-user fading channel. We see now that the effect of power adaptation is much more pronounced in the multiuser case, where power adaptation impacts the interference on other users.

![Graph](image)

Figure 14.5: Two-User Capacity Region in Rayleigh Fading.

If we compare Figures 14.3 and 14.5 we see that fading decreases the capacity region, even with optimal power and bandwidth, timeslot, or code adaptation relative to the fading. The fact that fading reduces the capacity region is not surprising, since the single-user fading channel capacity evaluated in Chapter 4 is less than the capacity of an AWGN channel with the same average SNR.

To summarize, the time-varying capacity region is obtained by taking a weighted average of time-invariant capacity regions associated with the different noise density pairs, with the weights determined by the joint probability distribution of these pairs. Numerical evaluation of the capacity regions defined by (14.13) and (14.15) is straightforward using the methods defined in \S3.7. These regions have the same general shape as in Figures 14.3 and 14.4, although they are smaller for the fading channel than for the AWGN channel. Evaluation of (14.16), (14.17), and (14.18) requires an exhaustive search or a difficult multidimensional optimization over time. A lower bound for (14.16), the frequency-division rate region with optimal power and bandwidth adaptation, is obtained by maximizing over all fixed-frequency-division rate regions (14.15). A lower bound for the code-division rate region with optimal power and transmit constellation adaptation is obtained by keeping the transmit power $S_{1,k} = S_{2,k} = S$ constant in (14.17) and (14.18).
14.4 Multiple Access Channel Capacity Region

14.4.1 The AWGN Multiple Access Channel

The multiaccess channel consists of several transmitters, each with power P_i, sending to a receiver which is corrupted by AWGN of power n. If we denote the ith transmitted signal by X_i, then the received signal is given by $Y = \sum_{i=1}^{K} X_i + N$, where N is an AWGN sample of power n. The two-user multiaccess capacity region was determined by Cover to be the closed convex hull of all vectors (R_1, R_2) satisfying [12]

$$R_i \leq B \log \left(1 + \frac{P_i}{nB} \right),$$

$$R_1 + R_2 \leq B \log \left(1 + \frac{P_1 + P_2}{nB} \right).$$

(14.19)

This region is shown in Figure 14.6, where C_i and C_i^* are given by

$$C_i = B \log \left(1 + \frac{P_i}{nB} \right), \quad i = 1, 2,$$

(14.20)

$$C_1^* = B \log \left(1 + \frac{P_1}{nB + P_2} \right),$$

(14.21)

and

$$C_2^* = B \log \left(1 + \frac{P_2}{nB + P_1} \right).$$

(14.22)

![Figure 14.6: Multiaccess Channel Rate Region.](image)

The point $(C_1, 0)$ is the achievable rate vector when transmitter 1 is sending at its maximum rate and transmitter 2 is silent, and the opposite scenario achieves the rate vector $(0, C_2)$. The corner points (C_1, C_2^*) and (C_1^*, C_2) are achieved using the successive decoding technique described above for superposition codes. Specifically, let the first user operate at the maximum data rate C_1. Then its signal will appear as noise to user 2; thus, user 2 can send data at rate C_2^* which can be decoded at the receiver with arbitrarily small error probability. If the receiver then subtracts out user 2’s message from its received signal, the remaining message component is just users 1’s message corrupted by noise, so rate C_1 can be achieved with arbitrarily small error probability. Hence, (C_1, C_2^*) is an achievable rate vector. A similar argument with the user roles reversed yields the rate point (C_1^*, C_2).

281
Time division between the two transmitters operating at their maximum rates, given by (14.20), yields any rate vector on the straight line connecting C_1 and C_2. With frequency division, the rates depend on the fraction of the total bandwidth that is allocated to each transmitter. Letting B_1 and B_2 denote the bandwidth allocated to each of the two users, we get the rate region (R_1, R_2) with

$$R_i \leq B_i \log \left[1 + \frac{P_i}{nB_i} \right]. \quad (14.23)$$

Clearly this region dominates time division, since setting $B_1 = \tau B$ and $B_2 = (1 - \tau)B$ in (14.23) yields a higher rate region (R_1, R_1) than $(\tau C_1, (1 - \tau)C_2)$. Varying the values of B_1 and B_2 subject to the constraint $B_1 + B_2 = B$ yields the frequency division curve shown in Figure 14.6. It can be shown [12] that this curve touches the rate region boundary at one point, and this point corresponds to the rate vector which maximizes the sum $R_1 + R_2$. To achieve this point, the bandwidths B_1 and B_2 must be proportional to their corresponding powers P_1 and P_2.

As with the broadcast multiuser channel, we can achieve the same rate region with time division as with frequency division by efficient use of the transmit power. If we take the constraints P_1 and P_2 to be average power constraints, then since user i only uses the channel τ_i percent of the time, its average power over that time fraction can be increased to P_i/τ_i. The rate region achievable through time division is then given by (R_1, R_2) with

$$R_i \leq \tau_i B \log \left[1 + \frac{P_i}{n\tau_i B} \right], \quad i = 1, 2, \quad (14.24)$$

and substituting $B_i \triangleq \tau_i B$ in (14.24) yields the same rate region as in (14.23).

Superposition codes without successive decoding can also be used. With this approach, each transmitter’s message acts as noise to the others. Thus, the maximum achievable rate in this case cannot exceed (C_1^s, C_2^s), which is clearly dominated by frequency division for some bandwidth allocations, in particular the allocation that intersects the rate region boundary. More work is needed to determine when, if ever, this suboptimal technique achieves better rates than time or frequency division. Clearly, however, $C_1^s \rightarrow C_1$ as $R_2 \rightarrow 0$ or, equivalently $P_2 \rightarrow 0$. Similarly, $C_2^s \rightarrow C_2$ as $R_1 \rightarrow 0$. Based on this observation it is clear that the suboptimality of superposition codes without successive decoding is most pronounced when both users transmit their full power.

14.4.2 Fading Multiaccess Channels

The two-user fading multiaccess channel has two transmitters with average power P_1 and P_2, respectively, and one receiver with bandwidth B and AWGN of time-varying power $n(t)$. Let $\pi_k = p(n(t) = k)$ We also assume that transmitter i tracks $n_i(t)$, and the receiver tracks both $n_1(t)$ and $n_2(t)$. The transmitters may vary their instantaneous transmit power $P_i(t)$ relative to $n(t)$, subject only to the average power constraint $\overline{P_i(t)} = P_i$ for $i = 1, 2$.

We first consider spectrum sharing through time division. With this technique we can achieve any point $(R_1, R_2) = \int \pi_k (\tau C_k(\Phi_{k_1}))(1 - \tau)C_k(\Phi_{k_2}))$, where

$$C_k(\Phi_{k_1}) \triangleq B \log \left[1 + \frac{\Phi_{k_1}}{nB} \right], \quad (14.25)$$

and Φ_{k_i}, the power allocated to the ith user when $n(t) = n_i$, is subject to the average power constraint $\int \pi_k \Phi_{k_i} = P_i$. The Φ_{k_i}s can be optimized independent of each other, since under time division the two users are orthogonal. Optimizing these power allocations subject to the power constraint therefore defines
a straight line connecting the points $C_1(P_1)$ and $C_2(P_2)$, where

$$C_i(P) = \max_{\{P_k: \int_k \pi_k \Phi_k = P\}} \int_k \pi_k C_k(\Phi_{ki}), \quad (14.26)$$

Fixed frequency division partitions the total bandwidth B into nonoverlapping segments B_1 and B_2, which are then allocated to the respective transmitters. Since the bandwidths are separate, the users are independent, and they can allocate their time-varying power independently, subject only to the total power constraint P. The fixed frequency division rate region (R_1, R_2) thus satisfies

$$R_i \leq \max_{\Phi_{ki}} \int \pi_k C_k(\Phi_{ki}, B_i), \quad (14.27)$$

where

$$C_k(\Phi_{ki}, B_i) = B_i \log \left[1 + \frac{\Phi_{ki}}{B_i} \right], \quad (14.28)$$

and the Φ_{ki}s satisfy the power constraint $\int \pi_k \Phi_{ki} = P$.

It can be shown [26] that fixed frequency division dominates time division, and superposition coding dominates both. Thus, as for the broadcast channel, the relative performance of the different spectrum sharing techniques is the same in AWGN and in fading, although the shape of the capacity region is different.

14.5 Random Access

Given a channelization scheme, each user can be assigned a different channel for some period of time. However, most data users do not require continuous transmission, so dedicated channel assignment can be extremely inefficient. Moreover, most systems have many more total users (active plus idle users) than channels, so at any given time channels can only be allocated to users that need them. Random access strategies are used in such systems to assign channels to the active users.

Random access techniques were pioneered by Abramson with the ALOHA protocol [7]. In the ALOHA random access protocol, packets are buffered at each terminal and transmitted over a common channel to a common hub or base station. In unslotted, or “pure” ALOHA, no control is imposed on the channel to synchronize transmission from the various users, and therefore the start times of packets from different users in the network can be modeled as a Poisson point process. Should two users “collide,” they both wait a random amount of time before retransmitting. The goal, of course, is to prevent the users from colliding once again when they retransmit. Under these circumstances packets from different users will be transmitted with a high probability of success if there is a light to moderate amount of traffic on the network. As the traffic on the network increases the probability of a collision between packets from different users increases.

In slotted ALOHA, the users are further constrained by a requirement that they only begin transmitting at the start of a time slot. The use of such time slots increases the maximum possible throughput of the channel [8], but also introduces the need for synchronization of all nodes in the network, which can entail significant overhead. Even in a slotted system, collisions occur whenever two or more users attempt transmission in the same slot. Error control coding can result in correct detection of a packet even after a collision, but if the error correction is insufficient then the packet must be retransmitted, resulting in a complete waste of the energy consumed in the original transmission. A study on design optimization between error correction and retransmission is described in [9].

283
The pessimistic assumption that a collision results in the loss of two packets is usually made in the analysis of an ALOHA channel. Using this assumption it is possible to show the maximum value of the throughput in an ALOHA channel is about 18% of the peak data rate. In practice such channels are usually sized to operate at about 10% of the peak data rate. Slotted ALOHA has roughly double this peak data rate due the fact that a collision only causes the loss of a single packet.

Collisions can be reduced by Carrier Sense Multiple Access (CSMA), where users sense the channel and delay transmission if they detect that another user is currently transmitting [8]. CSMA only works when all users can hear each other's transmissions, which is typically not the case in wireless systems due to the nature of wireless propagation. This gives rise to the hidden terminal problem, illustrated in Figure 14.7, where each node can hear its immediate neighbor but no other nodes in the network. In this figure both node 3 and node 5 wish to transmit to node 4. Suppose node 5 starts his transmission. Since node 3 is too far away to detect this transmission, he assumes that the channel is idle and begins his transmission, thereby causing a collision with node 5's transmission. Node 3 is said to be hidden from node 5 since it cannot detect node 5's transmission. ALOHA with CSMA also creates inefficiencies in channel utilization from the exposed terminal problem, also illustrated in Figure 14.7. Suppose the exposed terminal in this figure - node 2 - wishes to send a packet to node 1 at the same time node 3 is sending to node 4. When node 2 senses the channel it will detect node 3's transmission and assume the channel is busy, even though node 3 does not interfere with the reception of node 2's transmission by node 1. Thus node 2 will not transmit to node 1 even though no collision would have occurred.

Figure 14.7: Hidden and Exposed Terminals.

The collisions introduced by hidden terminals and inefficiencies introduced by exposed terminals are often addressed by a four-way handshake prior to transmission, as in the 802.11 wireless LAN protocol [10, 11]. However, this handshake protocol is based on single hop routing, and thus its performance in multihop networks is suboptimal [12, 13]. Another technique to avoid hidden and exposed terminals is busy tone transmission. In this strategy users first check to see whether the transmit channel is busy by listening for a "busy tone" on a separate control channel [8]. There is typically not an actual busy tone but instead a bit is set in a predetermined field on the control channel. This scheme works well in preventing collisions when a centralized controller can be "heard" by users throughout the network. In a flat network without centralized control, more complicated measured are used to ensure that any potential interferer on the first channel can hear the busy tone on the second [14, 15]. Hybrid techniques using handshakes, busy tone transmission, and power control are investigated in [15]. Note that while the four-way handshake and busy tone transmission both reduce collisions due to the hidden terminal problem, they tend to aggravate the exposed terminal problem, leading to less efficient utilization of the available channels in the network. A solution to this problem is to have both transmitter and receiver send busy tones [14].

284
The throughput of a channel is not necessarily the most appropriate figure of merit. The throughput of a channel is simply the fraction of time during which the channel can be used to transmit data. In some cases, such as average power limited satellite channels or battery operated transmitters, the average data rate of the channel for a fixed average transmitter power and a fixed bandwidth is a more appropriate figure of merit. We can define such a figure of merit for multiple access channels, called the efficiency of the channel, which takes into account the system resources of average power and bandwidth. The efficiency of an ALOHA multiple access channel is the ratio of the ALOHA channel capacity to the capacity of the continuous channel using the same average power and the same total bandwidth. When these channel resources are taken into account the picture of ALOHA efficiency that emerges is much different from that of ALOHA throughput. Specifically, the efficiency of an ALOHA channel approaches one for the important case of small values of throughput and small values of the signal to noise power ratio. In other words, under these conditions it is not possible to find a multiple access protocol which has a higher capacity for a given value of average power and a given bandwidth.

By the end of 1996 ALOHA channels have been employed in a wide variety of connection free wireless applications. Various forms of ALOHA channels are used as the signaling channel in all three major digital cellular standards (IS-54, IS-95 and GSM). They are used in the ARDIS and RAM Mobitex packet radio networks, in the Japanese Teleterminal network and in a variety of commercial campus networks, such as the Multipoint mpNET and the ARIA System III. They are used in the request channel of the INMARSAT maritime satellite network to allow tens of thousands of ship stations to request voice and telex capacity and in more than 100,000 very small aperture earth stations (VSAT's) now in operation.

All of these products are narrowband applications typically operating at about 10 Kbs. Convention first generation ALOHA channels cannot easily provide the much higher bandwidths required for a broadband wireless data network to service a large number of users and the larger markets of interest today. A conventional ALOHA channel cannot be easily implemented when the channel bandwidth is much higher than this because of the demands this puts on the burst power output of the remote terminals. Newer developments of second generation wideband versions of ALOHA, such as Spread ALOHA Multiple Access (SAMA), are expected to change this situation in the future [16].

14.6 Scheduling

Random access protocols work well with bursty traffic where there are many more users than available channels, yet these users rarely transmit. If users have long strings of packets or continuous stream data, then random access works poorly as most transmissions result in collisions. Thus channels must be assigned to users in a more systematic fashion by transmission scheduling. In scheduled access the available bandwidth is channeled into multiple time, frequency, or code division channels. Each node schedules its transmission on different channels in such a way as to avoid conflicts with neighboring nodes while making the most efficient use of the available time and frequency resources. While there has been much work on transmission scheduling, or channel assignment, in cellular systems [17], the centralized control in these systems greatly simplifies the problem. Distributed scheduled access in ad hoc wireless networks in general is an NP-hard problem [18]. Selman et al. have recently discovered that NP-hard problems exhibit a rapid change in complexity as the size of the problem grows [19, 20]. The identification of this “phase transition” provides an opportunity for bounding the complexity of problems like scheduled access by staying on the good side of the phase transition.

Even with a scheduling access protocol, some form of ALOHA will still be needed since a predefined mechanism for scheduling will be, by definition, unavailable at startup. ALOHA provides a means for initial contact and the establishment of some form of scheduled access for the transmission of relatively
large amounts of data. A systematic approach to this initialization that also combines the benefits of random access for bursty data with scheduling for continuous data is packet reservation multiple access (PRMA) [Goodman89]. PRMA assumes a slotted system with both continuous and bursty users (e.g., voice and data users). Multiple users vie for a given timeslot under a random access strategy. A successful transmission by one user in a given timeslot reserves that timeslot for all subsequent transmissions by the same user. If the user has a continuous or long transmission then after successfully capturing the channel he has a dedicated channel for the remainder of his transmission (assuming subsequent transmissions are not corrupted by the channel: this corruption causes users to lose their slots and they must then recontend for an unreserved slot, which can entail significant delay). When this user has no more packets to transmit, the slot is returned to the pool of available slots that users attempt to capture via random access. Thus, data users with short transmissions benefit from the random access protocol assigned to unused slots, and users with continuous transmissions get scheduled periodic transmissions after successfully capturing an initial slot. A similar technique using a combined reservation and ALOHA policy is described in [11].

14.7 Power Control

Access protocols can be made more efficient and distributed by taking advantage of power control. Work in this area has mainly focused on maintaining the SINR of each user sharing the channel above a given threshold, which may be different for different users. Necessary and sufficient conditions to ensure that a feasible set of transmit powers for all users exists under which these users can meet their threshold SINR levels given the link gains between them are determined in [28]. Battery power for each user is minimized by finding the minimum power vector within the feasible set. This algorithm can also be performed in a distributed manner, which eliminates the need for centralized power control. Access to the system can be based on whether the new user causes other users to fall below their SINR targets. Specifically, when a new user requests access to the system, a centralized controller can determine if a set of transmit powers exists such that he can be admitted without degrading existing users below their desired SINR threshold. This admission can also be done using the distributed algorithm, where the new user gradually ramps up his power, which causes interference to other existing users in the system. If the new user can be accommodated in the system without violating the SINR requirements of existing users, then the power control algorithms of the new and existing users eventually converge to the feasible power vector under which all users (new and existing) meet their SINR targets. If the new user cannot be accommodated then as he ramps up his power the other users will increase their powers to maintain their SINRs such that the new user remains far from his SINR target. After some number of iterations without reaching his target, the new user will either back off from the channel and try again later or adjust his SINR target to a lower value and try again.

A power control strategy for multiple access that takes into account delay constraints is proposed and analyzed in [28]. This strategy optimizes the transmit power relative to both channel conditions and the delay constraint via dynamic programming. The optimal strategy exhibits three modes: very low power transmission when the channel is poor and the tolerable delay large, higher power when the channel and delay are average, and very high power transmission when the delay constraint is tight. This strategy exhibits significant power savings over constant power transmission while meeting the delay constraints of the traffic.
Bibliography

Bibliography

Chapter 15

Cellular Systems

One of the biggest challenges in providing multimedia wireless services is to maximize efficient use of the limited available bandwidth. Cellular systems exploit the power falloff with distance of signal propagation to reuse the same frequency channel at spatially-separated locations. Specifically, in cellular systems a given spatial area (like a city) is divided into nonoverlapping cells, as shown in Figure 15.1. Different frequencies, timeslots, or codes are assigned to different cells. For time and frequency division, cells operating on the same frequency or timeslot are spaced just far enough apart so that their mutual interference is tolerable. In code-division the codes are reused every cell.

![Cellular System Diagram](image)

Figure 15.1: Cellular System.

In this chapter we first describe the basic design principles of cellular systems. We then describe a capacity measure for cellular systems, the *area spectral efficiency*, and compute this efficiency for simple
15.1 Cellular System Design

For the cellular system shown in Figure 15.1 the central transmitter in each cell is connected to a base station and switching office which act as a central controller. Allocation of channels is performed by this centralized control function, as is the power control in CDMA systems. This controller also coordinates handoff to a neighboring cell when the mobile terminal traverses a cell boundary. The handoff procedure occurs when the base station in the originating cells detects the signal power of the mobile decreasing as it moves towards a cell boundary. This causes the base station in the originating cell to query neighboring cells in order to detect the destination base station. If the destination base station does not have any available channels, the handoff call will be dropped. A call will also be dropped if the originating base station detects a drop in received signal power due to multipath fading or shadowing, and initiates a handoff as a result even though the mobile terminal might be nowhere near a cell boundary. The spectral efficiency per unit area is increased by shrunking the size of a cell, since more users can be accommodated in a given area. However, decreasing the cell size increases the rate at which handoffs occur, which impacts higher level protocols. In general, if the rate of handoff increases the rate of call dropping will also increase proportionally. Routing is also more difficult with small cells, since routes need to be re-established whenever a handoff occurs.

While frequency reuse increases spectral efficiency, it also introduces co-channel interference, which affects the achievable data rate and bit-error-probability of each user. The interference which results from reusing frequencies is small if the users operating at the same frequency have enough distance between them. However, spectral efficiency is maximized by packing the users as close together as possible. Thus, the best cellular system design places users which share the same channel at a separation distance where the co-channel interference is just below the maximum tolerable level for the required data rate and error probability. Equivalently, good cellular system designs are interference-limited, such that the interference power is much larger than the noise power, and thus noise is generally neglected in the study of these systems.

Since co-channel interference is subject to shadowing and multipath fading, a static cellular system design must assume worst-case propagation conditions in determining this separation distance. A better design uses dynamic resource allocation in the cellular system, where power and bandwidth are allocated based on propagation conditions, user demands, and system traffic. Dynamic resource allocation can significantly increase both spectral and power efficiency, but the system complexity also increases dramatically. We discuss dynamic resource allocation in more detail below.

15.2 Frequency Reuse in Cellular Systems

15.2.1 Frequency Reuse in Code-Division Systems

The channels for code-division are semi-orthogonal due to the spreading code properties: these codes allow channel reuse in every cell, but also introduce interference from all users within the same cell (intracell interference) as well as from users in other cells (intercell interference). To compensate for the near-far problem of the intracell interferers, most code-division multiple access systems use power control. Unfortunately, using power control to invert signal attenuation dramatically increases the interference from neighboring cells: since mobiles close to a cell boundary generally have weak received signal power, power control boosts up the transmit power of these boundary mobiles, which increases their interference.
to neighboring cells. Both intracell and intercell interference are attenuated by the processing gain of the code [1]. Due to the large number of interferers, the performance analysis of a code-division cellular system is fairly complex, and depends very heavily on the propagation model, cell size, mobility models, and other system parameters [1].

15.2.2 Frequency Reuse in Time and Frequency Division Systems

The channels in frequency-division (FDMA) or time-division (TDMA) are orthogonal, so there is no intracell interference in these systems. However, frequency reuse introduces intercell (co-channel) interference in all cells using the same channel. Thus, the received SNR for each user is determined by the amount of interference at its receiver. If the system is not interference-limited then spectral efficiency could be further increased by allowing more users onto the system or reusing the frequencies at smaller distances.

Consider the cell diagram in Figure 15.2 below. Let \(R \) be the distance from the cell center to a vertex. We denote the location of each cell by the pair \((i, j)\) where, assuming cell A to be centered at the origin \((0, 0)\), the location relative to cell A is obtained by moving \(i\) cells along the \(u\) axis, then turning 60 degrees counterclockwise and moving \(j\) cells along the \(v\) axis. For example, cell G is located at \((0, 1)\), cell S is located at \((1, 1)\), cell P is located at \((-2, 2)\), and cell M is located at \((-1, -1)\). It is straightforward to show that the distance between cell centers of adjacent cells is \(\sqrt{3}R\), and that the distance between the cell center of a cell located at the point \((i, j)\) and the cell center of cell A (located at \((0, 0)\)) is given by

\[
D = \sqrt{3}R\sqrt{i^2 + j^2 + ij}. \tag{15.1}
\]

The formula (15.1) for \(D\) suggests a method for assigning frequency A to cells such that the cell separation between cells operating at frequency A is \(D = \sqrt{3}R\sqrt{i^2 + j^2 + ij}\). Starting at the origin cell A, move \(i\) cells along any chain of hexagons, turn counterclockwise by 60 degrees, move \(j\) cells along the hexagon chain of this new heading, and assign frequency A to the \(j\)th cell. This process is shown in Figure 15.3 below. To assign frequency A throughout the region, this process is repeated starting with any of the new A cells as origin.

Using this process to assign all frequencies results in hexagonal cell clusters, which are repeated at the distance \(D\), as shown in Figure 15.4. Given that the area of a hexagonal cell is \(A_{cell} = 3\sqrt{3}R^2/2\) and the area of a hexagonal cluster is \(A_{cluster} = \sqrt{3}D^2/2\), the number of cells per cluster is \(N = D^2/(3R^2) = i^2 + j^2 + ij\). \(N\) is also called the reuse factor, and a small value of \(N\) indicates efficient frequency reuse (frequencies reused more often within a given area).

15.3 Dynamic Resource Allocation in Cellular Systems

Initial cellular systems were based on a fixed frequency reuse pattern designed for worst-case signal propagation and interference assumptions. Any system using fixed frequency reuse and base station assignment must be designed relative to worst-case interference assumptions. Dynamic resource allocation is a more efficient strategy, where frequencies, base stations, data rates, and power levels are dynamically assigned relative to to the current interference, propagation, and traffic conditions. Simple dynamic channel allocation techniques have been shown to improve channel efficiency by a factor of two or more, even for relatively simple algorithms [7]. However, this analysis was based on fairly simplistic system assumptions. Performance improvement of dynamic resource allocation under realistic system conditions remains an open and challenging research problem.
Figure 15.2: Cell Locations.

Figure 15.3: Frequency Assignment.
Most previous investigations on dynamic channel allocation were based on assumptions of fixed traffic intensity, heterogeneous user demands, fixed reuse constraints, and static channels and users. Even under these simplistic assumptions, optimizing channel allocation is highly complex. An excellent survey on current research in dynamic resource allocation can be found in [7].

Reduced complexity has been obtained by applying neural networks and simulated annealing to the problem; however, these approaches can suffer from lack of convergence, or yield suboptimal results. Little work has been done on optimal or suboptimal resource allocation strategies which consider the simultaneous stochastic variation in traffic, propagation, and user mobility. In addition, current allocation procedures are not easily generalized to incorporate power control, traffic classes (e.g., multimedia), cell handoff, or user priorities. The superior efficiency of dynamic resource allocation is most pronounced under light loading conditions. As traffic becomes heavier, dynamic allocation strategies can suffer from suboptimal allocations which are difficult to reallocate under heavy loading conditions. Thus, the optimal dynamic resource allocation strategy is also dependent on traffic conditions, as was the optimal choice of multiple or random access technique. Finally, the complexity of dynamic resource allocation, particularly in systems with small cells and rapidly-changing propagation conditions and user demands, may be impossible to overcome, at least for the next five to ten years.

15.4 Area Spectral Efficiency

The multiuser capacity results of Chapter 15 assume multiple users sharing the same frequency band through either an orthogonal (FDMA/TDMA) or semi-orthogonal (CDMA) partition of the spectrum. The spectral efficiency over a large geographical area for any of these partition techniques can generally be increased by reusing the same frequency, time slot, or code at spatially separated cells, where the
power falloff with distance reduces the effect of the intercell interference. The magnitude of the intercell interference depends on both the distance between interfering cells, also called the reuse distance \(R_D \), as well as the propagation laws governing the interferers’ transmissions and the power adaptation policy. Ideally, we would like to optimize the reuse distance \(R_D \) to maximize the multiuser capacity per unit area of the cellular system. We would also like to optimize the power adaptation policy, but this is a very difficult optimization problem, as we discuss below.

In the following sections, we first describe the interference model used for the capacity calculations. We then define the multicell capacity and the area spectral efficiency, which are both functions of reuse distance. We also give a qualitative discussion of the effects of power control on intracell and intercell interference. We conclude by outlining some methods of interference mitigation. These methods include antenna sectorization, voice activity monitoring, and interference cancellation. Since multicell systems are interference limited, any technique to reduce interference will increase the system capacity.

15.5 Interference Model

Most cellular systems are interference limited, meaning that the receiver noise power is generally much less than the interference power, and can hence be neglected. The interference distribution for multicell systems is generally assumed to be Gaussian. This is a reasonable assumption for CDMA systems, where there are many intracell and intercell interferers, so the Gaussian distribution follows from the law of large numbers. With FDMA or TDMA, however, there is usually only a few dominant interferers from the first tier of interfering cells. Thus, the Gaussian assumption is usually invalid. In particular, on the forward link, one or two mobiles which are close to the cell boundaries will generally dominate the interference. On the reverse link, there are at most six interfering base stations for hexagonal cells. However, for capacity calculations, the capacity-achieving distribution for all users (i.e. signal and interference) is Gaussian. Thus, modeling the interference as Gaussian noise in capacity calculations is justified for any of the partitioning techniques we’ve discussed.

15.5.1 Reuse Distance, Multicell Capacity, and Area Efficiency

Define the reuse distance \(R_D \) to be the minimum distance between any two base stations that use the same code, frequency, or time slot. Since these resources are reused at the distance \(R_D \), the area covered by each resource is roughly the area of a circle with radius \(.5R_D \): \(\pi(.5R_D)^2 \). The larger the reuse distance, the less efficiently the network resources are used. However, reducing \(R_D \) increases the level of interference between cells, thereby reducing the capacity region of each cell. The multicell capacity characterizes this tradeoff between efficient resource use and the capacity region per cell.

Consider a cellular system with \(N \) users per cell, a reuse distance \(R_D \), and a total bandwidth allocation \(B \). The multicell system capacity is defined as the multiuser rate region per Hertz divided by the coverage area reserved for the cell resources:

\[
C_{\text{multicell}} = \frac{(R_1, R_2, \ldots, R_N)/B}{\pi(.5R_D)^2},
\]

where \((R_1, R_2, \ldots, R_N)\) is the set of maximum rates that can be maintained by all users in the cell simultaneously. Clearly, this set of rates will monotonically decrease as the interference from other cells increases. Typically, these interference levels are inversely proportional to \(R_D \). Since the denominator of (15.2) increases with \(R_D \), there should be an optimal reuse distance which maximizes (15.2). However, deriving this optimal value for the entire rate region is quite complicated, and therefore we instead consider optimizing the reuse distance for the area efficiency, which we now describe.
The area spectral efficiency of a cell is defined as the total bit rate/Hz/unit area that is supported by a cell’s resources. Given the multicell system capacity described above, the area efficiency is just

\[A_e = \frac{\sum_{i=1}^{N} R_i / B}{\pi (5 R_D)^2}. \]

(15.3)

The rate \(R_i \) is just the capacity of the \(i \)th user in the cell, which depends on \(\gamma_i = S_i / I_i \), the received signal-to-interference power of that user, and \(B_i \), the bandwidth allocated to that user. We could also define \(R_i \) to be the maximum possible rate for the \(i \)th user under a given set of system parameters (e.g. QPSK modulation with trellis coding, three branch diversity, and a required BER of \(10^{-6} \)). If \(\gamma_i \) is constant, then \(R_i = C_i = B_i \log(1 + S_i / I_i) \). Typically, \(\gamma_i \) is not constant, since both the interference and signal power of the \(i \)th user will vary with propagation conditions and mobile locations. When \(\gamma_i \) varies with time, \(R_i \) equals the time-varying channel capacity of the \(i \)th user:

\[R_i = B_i \int \log(1 + \gamma_i) p(\gamma_i) d\gamma_i. \]

(15.4)

It can also be defined as the maximum possible rate for the \(i \)th user under the given system parameters and time-varying channel conditions.

In general, it is extremely difficult to obtain the distribution \(p(\gamma_i) \) in a multicell system, since this distribution depends on the power control policy and channel variations of both the signal and the interferers. The power control policy that maximizes a single user’s data rate will not always maximize the area efficiency, since increasing the signal power of one user increases that user’s interference to everyone else. Determining the power control policy that maximizes area efficiency is a complex optimization problem which will depend on the spectrum partitioning technique, propagation characteristics, system layout, and the number of users. This optimization is too complex for analysis if all the system characteristics are taken into account. Thus, optimal power control for multicell systems remains an open problem.

If we fix the power control policy, and assume a particular set of system parameters, then the distribution of \(\gamma_i \) can be determined either analytically or via simulation. The distribution of \(\gamma_i \) for CDMA systems (i.e., with both intracell and intercell interference), assuming Gaussian interference and the channel inversion power control policy, has been determined analytically in [1, 2, 3], and via simulation in [4, 5]. The distribution of \(\gamma_i \) for CDMA under other power control policies, and for FDMA and TDMA under any form of power control, has not yet been determined. With these distributions, a comprehensive comparison of area efficiency under different power control policies and spectrum partitioning methods could be done using the methods described above.

15.5.2 Efficiency Calculations

We now give some examples of the area efficiency calculation for the cell uplink with different power control policies. In order to get analytical formulas for the efficiency, we must make very simple assumptions about the system. In particular, we ignore the effects of noise, fading, and shadowing. We will also ignore the effects of user mobility, and calculate the efficiency based on a fixed location for the mobile of interest and the interferers.

Consider first frequency-division, where all users in the cell are assigned the same bandwidth \(B_i = B / N \) and transmit power \(S \). We assume the pessimistic model that all the users in the cell are located at the cell boundary, and all the interferers are located at their cell boundaries closest to our cell of interest. We assume a propagation model of \(K d^{-2} \) within a cell, and \(K d^{-\gamma} \) outside the cell, where \(2 \leq \gamma \leq 4 \). With no power control (constant transmit power), the received signal power of the \(i \)th user is then \(S_i = S K R^{-2} \), and the interference power is \(I_i = 6 S K (R_D - R)^{-\gamma} \). The capacity of the \(i \)th user in the cell is thus
Figure 15.5: Area Efficiency for Frequency Division ($\gamma = 4$)

\[
C_i = \frac{B}{N} \log \left(1 + \frac{(R_D - R)^\gamma}{6R^2} \right),
\]

and the area efficiency is

\[
A_e = \frac{\sum_{i=1}^{N} C_i/B}{\pi(5R_D)^2} = \frac{\log \left(1 + \frac{(R_D - R)^\gamma}{6R^2} \right)}{\pi(5R_D)^2}.
\]

Plots of A_e versus R_D for $\gamma = 4$ and $\gamma = 2$, are shown in figures 15.5 and 15.6 below. In this plot and all subsequent plots, we normalize the cell radius to $R = 1$. Comparing these figures, we see that, as expected, if the interference propagation loss falls off more slowly, the area efficiency is decreased. However, it is somewhat surprising that the optimal reuse distance is also decreased.

Suppose now that the interferers are not on the cell boundaries. If all interferers are at a distance $R_D - R/2$ from their base stations, then the area efficiency becomes

\[
A_e = \frac{\sum_{i=1}^{N} C_i/B}{\pi(5R_D)^2} = \frac{\log \left(1 + \frac{(R_D - R/2)^\gamma}{6R^2} \right)}{\pi(5R_D)^2}.
\]

The area efficiency in this case is plotted in the figure below for $\gamma = 4$. As expected, the area efficiency in this case is larger then in Figure 15.5 and the optimal reuse distance is smaller.

Returning to the pessimistic geometry of all users on the cell boundaries, suppose we now use the power control policy which inverts the channel. The received signal power in this case is $S_i = S\rho$, where ρ is a normalizing constant that insures the transmit power satisfies the average power constraint\footnote{The transmit power of the mobile at distance D from its base is $S\rho D^2/K$ to compensate for the path loss KD^{-2}. For our static channel, with the mobile at distance $D = R, \rho = KR^{-\gamma}$ insures an average transmit power of S. In general, ρ will depend on the distribution of the channel variation, e.g. if the received $S/I = \gamma$ is Rayleigh distributed then $\rho = E1/\gamma = 0$. Since both the mobiles and interferers typically have the same S/I distribution, we assume ρ is the same for both.}. The interference power is $I_i = 6S\rho[R^2/K][K(R_D - R)^\gamma]$, where the first bracketed term is the power control

298
Figure 15.6: Area Efficiency for Frequency Division ($\gamma = 2$)

Figure 15.7: Interferer Distance of $R_D - R/2$
of the interferer, and the second bracketed term is the propagation loss of that interferer. The received signal-to-interference power in this case is thus

\[
\frac{S_i}{I_i} = \frac{(R_D - R)^\gamma}{6R^2},
\]

the same as in the case of no power control. So the area efficiency in this case is the same as that shown in Figures 15.5 and 15.6. The reason that power control does not affect the efficiency in this case is symmetry: because the mobile and interferers have the exact same propagation loss and interference conditions, the mobiles and interferers apply the same power control to their transmit signals. Thus, whatever the power control policy is, its effect will be cancelled out. However, when the interferers are closer to their base stations, the symmetry no longer applies.

Assume now that we use channel inversion, and that the interferers are at a distance \(R/2 \) from their base stations. The received signal power of the \(i \)th user is still \(S_i = S_p \). The received interference power is then

\[
I_i = 6S_p[(R/2)^2/K][K(R_D - R/2)^-\gamma],
\]

and the resulting area efficiency is

\[
A_e = \log \left(1 + \frac{(R_D - R/2)^\gamma}{6(R/2)^\gamma} \right) \quad \frac{1}{\pi(0.5R_D)^2}.
\]

This efficiency is plotted as a function of \(R_D \) in the figure below for \(\gamma = 4 \). Comparing Figures 15.6 and 15.8 we see that for this system geometry, channel inversion has a higher efficiency than constant transmit power.

Water-filling will give the same efficiency for all mobiles on the cell boundary as the other power control policies. However, as the interferers move closer to their base stations, they will increase their power. Thus, it is not clear what the worst-case interference scenario is for the water-filling power control.
The last example we consider is spread spectrum with channel inversion. Here, the received signal power is S_R. The interference power is the sum of in-cell and out-of-cell interference. We consider only the first tier of interfering cells, and assume that those 6 cells contribute the same interference power. Picking one of the interfering cells at random, the interference contribution from that cell is thus

$$I_{\text{interfering-cell}} = \frac{S}{G} \sum_{i=1}^{N} \frac{N(R_D - R_i)^{-\gamma}}{R_i^2},$$ \hspace{1cm} (15.11)

where G is the spreading gain of the code (the cross-correlation inverse) and R_i is the distance of the ith interferer from its base station. The total interference power is thus

$$I_t = \frac{S(N-1)}{G} + \frac{6S}{G} \sum_{i=1}^{N} \frac{N(R_D - R_i)^{-\gamma}}{R_i^2}. \hspace{1cm} (15.12)$$

Computing this interference power is fairly complicated, unless we assume that all users in the cell are located at the cell boundary, which is unlikely. However, we can lower bound the area efficiency by considering only the in-cell interference. Since we are ignoring the out-of-cell interference, the optimal reuse distance will be $R_D = 2R$, i.e. codes are reused in every cell. Then for N large,

$$\frac{S_i}{I_i} = \frac{N-1}{G} \approx \frac{N-1}{N} \approx 1,$$ \hspace{1cm} (15.13)

where we make the approximation that the spreading gain G is roughly equal to the number of codes N. Plugging this in, we get an area efficiency of

$$A_e = \log(1 + 1) = \frac{1}{\pi} = .318. \hspace{1cm} (15.14)$$

Thus, if we completely ignore out-of-cell interference, we get roughly the same capacity as the worst-case interference scenario of frequency-division without power control and interference power falloff with distance of Kd^{-1} (Figure 15.5). If we use the empirical observation that the out-of-cell interference power is roughly the same as the in-cell interference power, we get $A_e = \log 1.5\pi = .186$.

15.6 Power Control Impact on Interference

![Figure 15.9: Interference Effects.](image)

In this section we describe the qualitative impact of the power control policies we discussed for single-user systems on intracell and intercell interference. Consider first the case of intracell interference on the forward link (mobile to base station), where two users A_1 and A_2 are transmitting to the same base station, as shown in Figure 15.9. Recall that intracell interference only occurs in CDMA systems, since with FDMA or TDMA only one user is assigned to each frequency or time slot in the cell. If both
A_1 and A_2 transmit at the same power level, then the signal received by the base station from A_1 will generally be stronger than the signal received by A_2. Therefore, the interference caused by A_1 to A_2 will be strong even after despreading. This difference in received signal strength is called the near-far effect. To compensate for this effect, power control which equalizes the receive power of all users within a cell is used. With this type of power control, the received power of users A_1 and A_2 at the base station is the same, regardless of their individual path losses, so the signal-to-interference power after receiver processing equals the spreading gain. The “water-filling” power control policy, which increases power when the channel is good, has the opposite effect: since A_1 has a good signal path it will increase its transmit power, while A_2 has a bad signal path, so it will decrease its signal power. Moreover, this policy has a recursive effect: A_1 increasing its power causes A_2 to have an even worse channel, so A_2 will lower its power. This decreases the interference to A_1, so A_1 increases its power further, and so on. Roughly speaking, the constant water-filling tends to remove all users from the cell except the one with the most favorable channel. Therefore, if we consider only intracell interference effects, the water-filling policy is unacceptable when all the users within a cell require a guaranteed rate at all times. However, it may have a higher throughput in a system where the users within a cell can tolerate long periods of no transmission with an occasional burst of very high-rate data, as in packet radio systems. This assumes that all the users within a cell will eventually have the best signal path to the base station.

The effect of these two power control policies on intercell interference is quite different. Again referring to Figure 15.9, suppose we have intercell interferers B_1 and B_2 from cell B coupling into cell A. Without power control, the interference power from B_1 will be strong, since it is close to the boundary of cell A, while the interference from B_2 has much farther to travel to the base station of cell A, and will therefore be weaker. With the constant power policy, B_1 will transmit at a high power since it is far from its base station, and this will cause a higher level of interference in cell A. Since B_2 reduces power with this policy, and it is far from cell A's base station, the constant power policy has the effect of magnifying the power of interferers near cell B's boundary while reducing the power of interferers close to cell B's base station. Conversely, the water-filling power control will cause B_1 to lower its power and B_2 to increase its power, so that the intercell interferers in cell B have approximately the same amount of power coupling into cell A's base station, regardless of their location in cell B. Since the dominant intercell interferers are generally near the cell boundaries, water-filling will significantly reduce intercell interference on the forward link.

For the reverse link, the intracell interference and signal are both transmitted from the base station, so their path loss at any point within cell A is the same. Therefore, no power control is required to equalize the received signal strength of the signal and interference (equivalently, the constant power policy for the reverse link is achieved with no power control). Water-filling power control has the same recursive effect as in the forward link: since A_1 has a good path, the base station transmits to A_1 at a high power, which will cause interference to A_2, so transmit power to A_2 is reduced, and so on. Hence, the effect of these two power controls policies on intracell interference is roughly the same for both the forward link and the reverse link.

For intercell interferers, if the base station is sending to B_1 and B_2 at the same power level, then the location of B_1 and B_2 will not affect the amount of power coupling in to cell A. With water-filling, the base station will send at a higher power to B_2 and a lower power to B_1, but these interference signals have the same path loss to the mobiles in cell A. Therefore, it is difficult to say which power control policy will cause worse intercell interference on the reverse link.
15.7 Interference Mitigation

The rate regions for any of the three spectrum-sharing techniques will be increased if interference can be reduced while maintaining the same number of users per cell and the same reuse distance. Several techniques have been proposed to accomplish this, including speech gating, sectorization of the base station antennas, and interference cancellation. We now describe each of these techniques in somewhat more detail.

Speech gating takes advantage of the fact that in duplex voice transmission, each speaker is only active approximately 40% of the time [6]. If voice activity is monitored, and transmission suppressed when no voice is present, then overall interference caused by the voice transmission is reduced. If we denote the average percentage of time that voice is active by \(\rho \), then through speech gating the average power of both intracell and intercell interference is reduced by \(\rho \). Antenna sectorization refers to the use of directional transmit and receive antennas at the base station. For example, if the 360° omni base station antenna is divided into three sectors to be covered by three directional antennas of 120° beamwidths, then the interferers seen by each directional antenna is one third the number that would be seen by the omni. If \(N_s \) denotes the number of directional antennas used to cover the 360° beamwidth then, on average, antenna sectorization reduces the total interference power by a factor of \(N_s \).

Another method of mitigating interference in CDMA systems is multiuser detection. The received CDMA signal is a superposition of each user’s signal, where user \(i \) modulates its data sequence with a unique spreading code. The multiuser detector for such a received signal jointly detects the data sequences of all users: if the data sequences of the interference is known, then it can be subtracted out from the desired signal, as in the superposition coding techniques described above. The optimal receiver for CDMA joint detection was derived by Verdú in [8]; it uses a bank of matched filters and the Viterbi algorithm to determine either the maximum-likelihood set of received signal sequences or the set of signal sequences with minimum error probability. However, the complexity of this optimal receiver structure is exponential in the number of interfering users, making the receiver impractical for systems with many interferers. The detection algorithm also requires knowledge of the signal energies, which is not always available.

Several suboptimal multidetection schemes which are more practical to implement have also been developed. A multiuser decorrelator for joint detection which does not require knowledge of the user energies and with complexity that is only linear in the number of users was proposed in [9] and [10] for synchronous and asynchronous users, respectively. Multistage detectors [11, 12] decode the users’ signals sequentially in decreasing order of their received power. Specifically, the highest-power signal is detected using a conventional CDMA receiver (i.e., all interference signals are treated as noise). This signal is then subtracted from the total received signal, and then the highest-power remaining signal is detected. This successive interference cancellation is done until all signals have been estimated. The decision-feedback detector, proposed in [13], uses both forward and feedback filters to remove multiuser interference. As with decision-feedback equalization, this approach suffers from error propagation. The multistage detectors generally yield better performance than the decorrelator and decision-feedback detectors at a cost of increased complexity (although still linear in the number of users). These detectors were designed for AWGN channels, while more recent studies have looked at multiuser detection in fading channels [14, 15].
Bibliography

Chapter 16

Ad-Hoc Networks

An ad hoc wireless network is a collection of wireless mobile nodes that self-configure to form a network without the aid of any established infrastructure, as shown in Figure 16.1. Without an inherent infrastructure, the mobiles handle the necessary control and networking tasks by themselves, generally through the use of distributed control algorithms. Multihop connections, whereby intermediate nodes send the packets towards their final destination, are supported to allow for efficient wireless communication between parties that are relatively far apart. Ad hoc wireless networks are highly appealing for many reasons. They can be rapidly deployed and reconfigured. They can be tailored to specific applications, which fits with the Oxford English Dictionary’s definition of ad hoc: “For this purpose, to this end; for the particular purpose in hand or in view.” They are also highly robust due to their distributed nature, node redundancy, and the lack of single points-of-failure. These characteristics are especially important for military applications, and much of the groundbreaking research in ad hoc wireless networking was supported by the (Defense) Advanced Research Projects agency (DARPA) [1, 2, 3]. Despite much research activity over the last several decades on wireless communications in general, and ad hoc wireless networks in particular, there remain many significant technical challenges in the design of these networks. In this chapter we describe the basic design principles of ad hoc networks and some of the remaining technical challenges that are still unsolved.

The lack of infrastructure inherent to ad hoc wireless networks is best illustrated by contrast with the most prevalent wireless networks today: cellular systems and wireless local area networks (WLANs). As described in Chapter 15, cellular telephone networks divide the geographic area of interest into regions called cells. A mobile terminal located in a given cell communicates directly with a base station located at or near the center of each cell. Thus, there is no peer-to-peer communication between mobiles. All communication is via the base station through single hop routing. The base stations and backbone network perform all networking functions, including authentication, call routing, and handoff. Most wireless LANs have a similar, centralized, single hop architecture: mobile nodes communicate directly with a centralized access point that is connected to the backbone Internet, and the access point performs all networking and control functions for the mobile nodes. In contrast, an ad hoc wireless network has peer-to-peer communication, distributed networking and control functions among all nodes, and multihop routing.

This discussion should not be taken to mean that ad hoc wireless networks are completely flat; i.e., cannot have any infrastructure or pre-established node hierarchy. Indeed, many ad hoc wireless networks form a backbone infrastructure from a subset of nodes in the network to improve network reliability and capacity [4]. Similarly, some nodes may be chosen to perform as base stations for neighboring nodes [5]. The distinguishing emphasis in the ad hoc approach lies in the design requirements. Ad hoc wireless
networks may exploit infrastructure to improve network performance. However, while the infrastructure provides the side benefit of enhanced performance, it is not a fundamental design principle of the network.

Ad hoc networks are quite common in the wired world. Indeed, most LANs, metropolitan area networks (MANs), and wide area networks (WANs), including the Internet, have an ad hoc structure. However, the broadcast nature of the radio channel introduces characteristics in ad hoc wireless networks that are not present in their wired counterparts. In particular, a radio channel allows a node to transmit a signal directly to any other node. The link signal-to-interference-plus-noise power ratio (SINR) between two communicating nodes will typically decrease as the distance between the nodes increases, and will also depend on the signal propagation and interference environment. Moreover, this link SINR varies randomly over time due to the mobility of the nodes which typically changes the transmission distance, propagation environment, and interference characteristics. Link SINR determines the communication performance of the link: the data rate and associated probability of packet error or bit error (bit-error-rate or BER) that can be supported on the link. Links with very low SINRs are not typically used due to their extremely poor performance, leading to partial connectivity among all nodes in the network, as shown in Figure 16.1. However, link connectivity is not a binary decision, as nodes can back off on their transmission rate or increase their transmit power as link SINR degrades and still maintain connectivity [6, 7]. This is illustrated by the different line widths corresponding to different link qualities in Figure 1. Link connectivity also changes as nodes enter and leave the network, and this connectivity can be controlled by adapting the transmit power of existing network nodes to the presence of a new node [8].
The flexibility in link connectivity that results from varying link parameters such as power and data rate has major implications for routing. Nodes can send packets directly to their final destination via single hop routing as long as the link SINR is above some minimal threshold. However, single hop routing can cause excessive interference to surrounding nodes. Routing over a single hop may also require a relatively low rate or have a high probability of bit or packet error if the link SINR is low, thereby introducing excessive delays. Alternatively packets can be forwarded from source to destination by intermediate nodes at a link rate commensurate with the forwarding link SINR. Routing via forwarding by intermediate nodes is called multihop routing. Several recent research results indicate that ideal multihop routing significantly increases the capacity of ad hoc wireless networks [57, 34], but achieving these gains through a decentralized routing strategy remains elusive. The channel and network dynamics of ad hoc wireless systems coupled with multihop routing make it difficult to support multimedia requirements of high speed and low delay. However, flexibility in the link, access, network and application protocols can be exploited to compensate and even take advantage of these dynamics.

Energy constraints are not inherent to all ad hoc wireless networks. Devices in an ad hoc wireless network may be stationary and attached to a large energy source. Mobile devices may be part of a large vehicle, such as a car or tank, that can generate significant amounts of power over the long term. However, many ad hoc wireless network nodes will be powered by batteries with a limited lifetime. Some of the most exciting applications for ad hoc wireless networks follow this paradigm. Thus, it is important to consider the impact of energy-constrained nodes in the design of ad-hoc wireless networks. Devices with rechargeable batteries must conserve energy to maximize time between recharging. Of particular interest are devices that cannot be recharged, i.e. sensors that are imbedded in walls or dropped into a remote region. Energy constraints impact both the hardware operation and the signal transmission associated with node operation. It is often assumed that the transmit power associated with packet transmission dominates power consumption. However, signal processing associated with packet transmission and reception, and even hardware operation in a standby mode, consume nonnegligible power as well [9, 10, 11]. This entails interesting energy tradeoffs across protocol layers. At the link layer many communications techniques that reduce transmit power require a significant amount of signal processing. It is widely assumed that the energy required for this processing is small and continues to decrease with ongoing improvements in hardware technology [10, 12]. However, the results in [9, 11] suggest that these energy costs are still significant. This would indicate that energy-constrained systems must develop energy-efficient processing techniques that minimize power requirements across all levels of the protocol stack and also minimize message passing for network control, as these entail significant transmitter and receiver energy costs. Sleep modes for nodes must be similarly optimized, since these modes conserve standby energy but may entail energy costs at other protocol layers due to associated complications in access and routing. The hardware and operating system design in the node can also be optimized to conserve energy: techniques for this optimization are described in [11, 13].

Another important characteristic of ad hoc wireless networks is mobility in the network nodes. Mobility impacts all layers of the network protocol stack. At the link layer it determines how fast the link characteristics change and whether or not the link connectivity is stable over time. At the medium access control layer it affects how long measurements regarding channel and interference conditions remain in affect and how scheduling algorithms perform. At the network layer mobility has major implications for the performance of different routing algorithms. The impact of mobility on network performance ultimately dictates which applications can be supported on a highly mobile network. The impact of mobility on ad hoc wireless network design will be discussed in more detail throughout the paper.

The remainder of this chapter is organized as follows. We first discuss applications for ad hoc wireless networks, including data networks, home networks, device networks, sensor networks, and distributed
control. Next we consider cross layer design in ad hoc wireless networks: what it is, why it is needed, and how it can be done. Link layer design issues are discussed next, followed by consideration of the medium access control (MAC) layer design issues, including the tradeoffs inherent to frequency/time/code channelization and the assignment of users to these channels via random access or scheduling. This section also describes the role power control can play in multiple access. Networking issues such as neighbor discovery, network connectivity, scalability, routing, and network capacity are outlined next. Last we describe techniques for the network to adapt to the application requirements and the application to adapt to network capabilities.

16.0.1 Applications

Since the ad hoc wireless network paradigm tailors the network design to the intended application, it will be useful to consider potential applications in some detail. In what follows we will consider both military and commercial applications. We will see that several design requirements are common to both types of systems, especially the need for energy efficiency. Military applications often require the self-configuring nature and lack of infrastructure inherent to ad hoc wireless networks, even if it results in a significant cost or performance penalty. The lack of infrastructure is also highly appealing for commercial systems, since it precludes a large investment to get the network up and running, and deployment costs may then scale with network success. Other commercial advantages include ease of network reconfiguration and reduced maintenance costs. However, these advantages must be balanced against any performance penalty resulting from the need for distributed network control.

In this section we consider the following applications: data networks, home networks, device networks, sensor networks, and distributed control systems. Note that this list is by no means comprehensive, and in fact the success of ad hoc wireless networks hinges on making them sufficiently flexible so that there can be accidental successes. Therein lies the design dilemma for ad hoc wireless networks. If the network is designed for maximum flexibility to support many applications (a one-size-fits-all network) then it will be difficult to tailor the network to different application requirements. This will likely result in poor performance for some applications, especially those with high rate requirements or stringent delay constraints. On the other hand, if the network is tailored to a few specific applications then designers must predict in advance what these “killer applications” will be - a risky proposition. Ideally an ad hoc wireless network must be sufficiently flexible to support many different applications while adapting its performance to the given set of applications in operation at any given time. The cross layer design discussed in below provides this flexibility along with the ability to tailor protocol design to the energy constraints in the nodes.

Data Networks

Ad hoc wireless networks can support data exchange between laptops, palmtops, personal digital assistants (PDAs), and other information devices. We focus on two types of wireless data networks: LANs with coverage over a relatively small area (a room, floor, or building) and MANs with coverage over several square miles (a metropolitan area or battlefield). The goal of wireless LANs is to provide peak data rates on the order of 10-100 Mbps, similar to what is available on a wired LAN, for low- mobility and stationary users. Commercial wireless LAN standards such as 802.11a and 802.11b provide data rates on this order, however the individual user rates are much less if there are many users accessing the system. Moreover, these commercial LANs are not really based on an ad hoc structure. The normal 802.11 network configuration is a star topology with one wireless access point and single hop routing from the mobile units to the access point. While the 802.11 standard does support a peer-to-peer architecture
in the form of the Independent Base Service Set (IBSS) configuration option, it is not widely used and its performance is somewhat poor [Saadawi01].

Wireless MANs typically require multihop routing since they cover a large area. The challenge in these networks is to support high data rates, in a cost-effective manner, over multiple hops, where the link quality of each hop is different and changes with time. The lack of centralized network control and potential for high-mobility users further complicates this objective. Military programs such as DARPA’s GLOMO (Global mobile information systems) have invested much time and money in building high-speed wireless MANs that support multimedia, with limited success [14, 15]. Wireless MANs have also permeated the commercial sector, with Metricom the best example [16]. While Metricom did deliver fairly high data rates throughout several major metropolitan areas, the deployment cost was quite large and significant demand never materialized. Metricom filed for protection under Chapter XI of the Federal Bankruptcy Code in the fall of 2000.

Note that energy efficiency is a major issue in the design of wireless data networks. The canonical example of an ad hoc wireless data network is a distributed collection of laptop computers. Laptops are highly limited in battery power, so power must be conserved as much as possible. In addition, a laptop acting as a router for other laptops could drain its battery forwarding packets for other users. This would leave no power for the laptop user and would initiate a change in network topology. Thus, these networks must conserve battery power in all communication functions, and devise routing strategies that use residual power at each node of the network in a fair and efficient manner.

Home Networks

Home networks are envisioned to support communication between PCs, laptops, PDAs, cordless phones, smart appliances, security and monitoring systems, consumer electronics, and entertainment systems anywhere in and around the home. The applications for such networks are limited only by the imagination. For example, using a PDA in the bedroom one could scan stored music titles on a PC and direct the bedroom stereo to play a favorite piece, check the temperature in the living room and increase it by a few degrees, check the daily TV programming from the Internet and direct the VCR to record a show that night, access voice messages and display them using a voice-to-text conversion software, check stocks on the Internet and send selling instructions to a broker, and start the coffee maker and toaster, all without getting up from the bed. Other applications include smart rooms that sense people and movement and adjust light and heating accordingly, “aware homes” that network sensors and computers for assisted living of seniors and those with disabilities, video or sensor monitoring systems with the intelligence to coordinate and interpret data and alert the home owner and the appropriate police or fire department of unusual patterns, intelligent appliances that coordinate with each other and with the Internet for remote control, software upgrades, and to schedule maintenance, and entertainment systems that allow access to a VCR, TiVo box, or PC from any television or stereo system in the home [17, 18, 19, 20].

There are several design challenges for such networks. One of the biggest is the need to support the varied quality-of-service (QoS) requirements for different home networking applications. QoS in this context refers to the requirements of a particular application, typically data rates and delay constraints, which can be quite stringent for home entertainment systems. Other big challenges include cost and the need for standardization, since all of the devices being supported on this type of home network must follow the same networking standard. Note that the different devices accessing a home network have very different power constraints: some will have a fixed power source and be effectively unconstrained, while others will have very limited battery power and may not be rechargeable. Thus, one of the biggest challenges in home network design is to leverage power in unconstrained devices to take on the heaviest communication and networking burden, such that the networking requirements for all nodes in the
network, regardless of their power constraints, can be met.

One approach for home networking is to use an existing wireless LAN standard such as 802.11 [21]. But 802.11 has several limitations for this type of application. First, it most commonly supports a star architecture with a single access point and all devices talking directly to this access node. This star architecture eliminates the benefits of multihop routing, and while multihop routing is possible in 802.11, as noted above, its performance is poor. In addition, 802.11 uses a statistical multiple access protocol, which makes it difficult to support the quality required in home entertainment systems. 802.11b is also somewhat limited in data rate (1-10Mbps), and while the 802.11a standard supports much higher rates (10-70 Mbps), it is mainly designed for packet data applications and not media streaming. While protocols to support media streaming on top of 802.11a are being developed (802.11e), this type of overlay will likely be insufficient to provide high-quality wireless home entertainment.

A natural choice for home networking is a peer-to-peer ad hoc wireless network. Much of the communication in home networks will take place between peer devices, so peer-to-peer communication eliminates the overhead of going through a centralized node. In addition, many of the devices in a home network will be low power or battery-limited. In an ad hoc wireless network these devices need only communicate with their nearest neighbors (typically a short distance away) to maintain connectivity with (all) other devices in the home. Thus, multihop routing will be very beneficial to such devices in terms of energy savings. Most home networking applications involve stationary or low-mobility nodes, so the protocols need not support high mobility. Ad hoc wireless networks will be challenged to provide high-quality media streaming for home entertainment, and this is an open area of active research.

Home networking is being pushed strongly by the HomeRF working group, which has developed an open industry standard for such networks that combines a centralized and peer-to-peer structure [19]. The working group for HomeRF was initiated by Intel, HP, Microsoft, Compaq, and IBM. The main component of the HomeRF protocol is its Shared Wireless Access Protocol (SWAP). The SWAP protocol is designed to carry both voice and data traffic and to interoperate with the PSTN and the Internet. SWAP is a combination of a managed network that provides isochronous services (such as real-time voice and video) via a centralized network controller (the main home PC) along with an ad hoc peer-to-peer network for data devices. The centralized network controller is not required but it greatly facilitates providing dedicated bandwidth to isochronous applications. Bandwidth sharing is enabled by frequency hopped spread spectrum at 50 hops/sec. HomeRF also supports a time division service for delivery of interactive voice and other time-critical services, and a random access protocol for high speed packet data. The transmit power for HomeRF is specified at 100 mW which provides a data rate of 1-2 Mbps. However, in August 2000 the FCC authorized a five-fold increase in the HomeRF bandwidth, effectively increasing data rates to 10 Mbps. The range of HomeRF covers a typical home and backyard. HomeRF products operating in the 2.4 GHz band are currently on the market in the 100–200 price range. Details on these products can be found at http://www.homerf.org.

Device Networks

Device networks support short-range wireless connections between devices. Such networks are primarily intended to replace inconvenient cabled connections with wireless connections. Thus, the need for cables and the corresponding connectors between cell phones, modems, headsets, PDAs, computers, printers, projectors, network access points, and other such devices is eliminated. Clearly many of these devices have limited battery life, but are generally rechargeable. Thus, device networks require energy efficiency.

The main technology driver for such networks is Bluetooth [5, 22]. The Bluetooth standard is based on a tiny microchip incorporating a radio transceiver that is built into digital devices. The transceiver takes the place of a connecting cable for electronic devices. Up to eight Bluetooth devices can form
a star-topology network (a piconet) with one node acting as a master and the other nodes acting as slaves. The master node is responsible for synchronization and scheduling transmissions of the slave nodes. Piconets can also be interconnected, leading to a multihop topology. Bluetooth is mainly for short-range communications, e.g. from a laptop to a nearby printer or from a cell phone to a wireless headset. Its normal range of operation is 10 m (at 1 mW transmit power), and this range can be increased to 100 m by increasing the transmit power to 100 mW. The system operates in the unregulated 2.4 GHz frequency band, hence it can be used worldwide without any licensing issues. The Bluetooth standard provides 1 data channel at 721 Kbps and up to three voice channels at 56 Kbps for an aggregate bit rate on the order of 1 Mbps. Networking is done via a packet switching protocol based on frequency hopping at 1600 hops per second. Energy constraints played a large role in the design of Bluetooth, with a goal of using as little energy from the host device as possible. Bluetooth uses a range of techniques in its hardware, communication, and networking protocols to preserve energy, including power-efficient modulation, a limited transmission range, smart packet detection, and intelligent sleep scheduling [22].

The Bluetooth standard was developed jointly by 3Com, Ericsson, Intel, IBM, Lucent, Microsoft, Motorola, Nokia, and Toshiba. Over 1300 manufacturers have now adopted the standard, and products compatible with Bluetooth are starting to appear on the market now. Some of the products currently available include a wireless headset for cell phones (Ericsson), a wireless USB or RS232 connector (RTX Telecom, Adyma), wireless PCMCIA cards (IBM), and wireless settop boxes (Eagle Wireless). The prognosis for Bluetooth has been varied, progressing from the early euphoria of the late 1990s to pessimism and claims of premature death in the year 2000 to the current outlook of guarded optimism.

Sensor Networks

Sensor networks have enormous potential for both consumer and military applications. For the military, it is now painfully clear that the wars of the 21st century will differ significantly from those of the 20th. Enemy targets will be small, mobile, and generally found in extremely hostile terrain. If the war in Afghanistan is any indication, the targets in future combats will be small and difficult to detect from great distances. Future military missions will therefore require that sensors and other intelligence gathering mechanisms be placed close to their intended targets. The potential threat to these mechanisms is therefore quite high, so it follows that the technology used must be highly redundant and require as little support as possible from friendly forces. An apparent solution to these constraints lies in large arrays of passive electromagnetic, optical, chemical, and biological sensors. These can be used to identify and track targets, and can also serve as a first line of detection for various types of attacks. A third function lies in the support of the movement of unmanned, robotic vehicles. For example, optical sensor networks can provide networked navigation, routing vehicles around obstacles while guiding them into position for defense or attack. The design considerations for some industrial applications are quite similar to those for military applications. In particular, sensor arrays can be deployed and used for remote sensing in nuclear power plants, mines, and other industrial venues.

Examples of sensor networks for the home environment include electricity, gas, and water meters that can be read remotely through wireless connections. The broad use of simple metering devices within the home can help consumers identify and regulate devices like air conditioners and hot water heaters that are significant consumers of power and gas. Simple attachments to power plugs can serve as the metering and communication devices for individual appliances. One can imagine a user tracking various types of information on home energy consumption from a single terminal the home computer. Remote control of television usage and content could be monitored in similar ways. Another important home application is smoke detectors that could not only monitor different parts of the house but also communicate to track the spread of the fire. Such information could be conveyed to local firefighters before they arrived on
the scene along with house blueprints. A similar type of array could be used to detect the presence and spread of gas leaks or other toxic fumes.

Sensor arrays also have great potential for use at the sites of large accidents. One may wish to consider, for example, the use of remote sensing in the rescue operations following the collapse of a building. Sensor arrays could be rapidly deployed at the site of an accident and used to track heat, natural gas, and toxic substances. Acoustic sensors and triangulation techniques could be used to detect and locate trapped survivors. It may even be possible to avert such tragedies altogether through the use of sensor arrays. The collapse of walkways and balconies, for example, can be predicted and tragedy averted by building stress and motion sensors into the structures from the outset. One can imagine large numbers of low-cost low-power sensors being directly inserted into the concrete before it is poured. Material fatigue can be detected and tracked over time throughout the structure. Such sensors must be robust and self-configuring, and would require a very long lifetime, commensurate with the lifetime of the structure.

Most sensors will be deployed with non-rechargeable batteries. The problem of battery lifetime in such sensors may be averted through the use of ultra-small energy-harvesting radios. Research on such radios, coined the PicoRadio, promise radios smaller than one cubic centimeter, weighing less than 100 grams, with a power dissipation level below 100 microwatts [23]. This low level of power dissipation enables nodes to extract sufficient power from the environment - energy harvesting - to maintain operation indefinitely. Such picoradios open up new applications for sensor deployment in buildings, homes, and even the human body.

In short, important applications of the future are enabled by large numbers of very small, lightweight, battery-powered sensors. These sensors must be easily and rapidly deployed in large numbers and, once deployed, they must form a suitable network with a minimum of human intervention. All of these requirements must be met with a minimum of power consumption due to battery limitations and, for many applications, the inability to recharge these batteries.

Distributed Control Systems

Ad hoc wireless networks enable distributed control, with remote plants, sensors and actuators linked together via wireless communication channels. Such networks are imperative for coordinating unmanned mobile units, and greatly reduce maintenance and reconfiguration costs over distributed control systems with wired communication links. Ad hoc wireless networks are currently under investigation for supporting coordinated control of multiple vehicles in an automated highway system (AHS), remote control of manufacturing and other industrial processes, and coordination of unmanned airborne vehicles (UAVs) for military applications.

Current distributed control designs provide excellent performance as well as robustness to uncertainty in model parameters. However, these designs are based on closed-loop performance that assumes a centralized architecture, synchronous clocked systems, and fixed topology. Consequently, these systems require that the sensor and actuator signals be delivered to the controller with a small, fixed delay. Ad hoc wireless networks cannot provide any performance guarantee in terms of data rate, delay or loss characteristics: delays are typically random and packets may be lost. Unfortunately, most distributed controllers are not robust to these types of communication errors, and effects of small random delays can be catastrophic [24, 25]. Thus, distributed controllers must be redesigned for robustness to the random delays and packet losses inherent to wireless networks. Ideally, the ad hoc wireless network can also be tailored to the requirements of the controller. This is a relatively new area of research; recent results in this area can be found in [25] and the references therein. Energy constraints in distributed control systems will be highly application-dependent: cars in an automated highway will have a large renewable
energy source, whereas sensors in most manufacturing applications will have nonrechargeable batteries.

16.0.2 Cross Layer Design

The different applications for ad-hoc networks have a wide range of network requirements as well as different energy constraints for different network nodes. The network requirements must be met despite variations in the link characteristics on each hop, the network topology, and the node traffic. It is very difficult to ensure performance of the network or the support of real-time or mission critical data in the face of these random variations. There has been significant research directed toward energy constraints, application requirements, and network variability at different levels of the network protocol stack. Examples include diversity, coding, power control, and adaptive techniques at the link layer, power control and scheduling at the MAC layer, energy-constrained and delay-constrained routing at the network layer, and application adaptation at the application layer. However, this work has mainly targeted isolated components of the overall network design, thereby ignoring important interdependencies. Specifically, current ad hoc wireless network protocol design is largely based on a layered approach, as shown in Figure 16.2. In this model each layer in the protocol stack is designed and operated independently, with interfaces between layers that are static and independent of the individual network constraints and applications. This paradigm has greatly simplified network design and led to the robust, scalable protocols in the Internet. However, the inflexibility and suboptimality of this paradigm results in poor performance for ad hoc wireless networks in general, especially when energy is a constraint or the application has high bandwidth needs and/or stringent delay constraints. To meet these requirements a cross layer protocol design that supports adaptivity and optimization across multiple layers of the protocol stack is needed.

In an adaptive cross layer protocol stack, the link layer can adapt rate, power, and coding to meet the requirements of the application given current channel and network conditions. The MAC layer can adapt based on underlying link and interference conditions as well as delay constraints and bit priorities. Adaptive routing protocols can be developed based on current link, network, and traffic conditions. Finally, the application layer can utilize a notion of soft quality-of-service (QoS) that adapts to the underlying network conditions to deliver the highest possible application quality. It is important that the protocols at each layer not be developed in isolation, but rather within an integrated and hierarchical framework to take advantage of the interdependencies between them. These interdependencies revolve around adaptivity at each layer of the protocol stack, general system constraints, such as energy and mobility, and the application(s) the network is supporting.

Adaptivity at each layer of the protocol stack should compensate for variations at that layer based on the time scale of these variations. Specifically, variations in link SINR are very fast, on the order of microseconds for vehicle-based users. Network topology changes more slowly, on the order of seconds, while variations of user traffic may change over tens to hundreds of seconds. The different time scales of the network variations suggest that each layer should attempt to compensate for variation at that layer first. If adapting locally is unsuccessful then information should be exchanged with other layers for a more general response. For example, suppose the link connectivity (link SINR) in the wireless link of an end-to-end network connection is weak. By the time this connectivity information is relayed to a higher level of the protocol stack (i.e. the network layer for rerouting or the application layer for reduced-rate compression), the link SINR will most likely have changed. Therefore, it makes sense for each protocol layer to adapt to variations that are local to that layer. If this local adaptation is insufficient to compensate for the local performance degradation then the performance metrics at the next layer of the protocol stack will degrade as a result. Adaptation at this next layer may then correct or at least mitigate the problem that could not be fixed through local adaptation. For example, consider again the weak link scenario. Link connectivity can be measured quite accurately and quickly at the link level.
The link protocol can therefore respond to weak connectivity by increasing its transmit power or its error correction coding. This will correct for variations in connectivity due to, for example, multipath fading. However, if the weak link is caused by something difficult to correct for at the link layer, e.g. the mobile unit is inside a tunnel, then it is better for a higher layer of the network protocol stack to respond by, for example, delaying packet transmissions until the mobile leaves the tunnel. Similarly, if nodes in the network are highly mobile then link characteristics and network topology will change rapidly. Informing the network layer of highly-mobile nodes might change the routing strategy from unicast to broadcast in the general direction of the intended user. It is this integrated approach to adaptive networking - how each layer of the protocol stack should respond to local variations given adaptation at higher layers - that forms the biggest challenge in adaptive protocol design.

Energy conservation also requires a cross layer design. For example, Shannon theory indicates that the energy required to communicate one bit of information decreases as the bit time increases [26].
Thus, energy can be conserved by transmitting a bit over a longer period of time. However, this will clearly impact the MAC protocol and also the application. Routing is also an interesting example. The most energy efficient routing protocol in a sensor network may use a centrally-located sensor to forward packets from other sensors. However, the battery of this sensor will be quickly exhausted, which might be undesirable from an application standpoint. Thus, the need for energy efficiency must be balanced against the lifetime of each individual node and the overall life of the network.

The above discussion indicates that in order to support an adaptive cross layer design, the design and operation of the protocol stack must evolve to that shown in Figure 16.3. This figure indicates that information must be exchanged across all layers in the protocol stack. This information exchange allows the protocols to adapt in a global manner to the application requirements and underlying network conditions. In addition, all protocol layers must be jointly optimized with respect to global system constraints and characteristics such as energy and high-mobility nodes. In order to design a protocol stack based on Figure 16.3, two fundamental questions must be answered:

1. What information should be exchanged across protocol layers and how should that information be adapted to?

2. How should global system constraints and characteristics be factored into the protocol designs at each layer.

Figure 16.3: Adaptive Cross Layer Design and Application.

In the next several sections we will discuss the design of the different layers in the protocol stack, and then revisit cross layer design relative to these two questions. Cross layer design is an active theme in ad hoc wireless network design today. However, there remains many open questions in the understanding and implementation of this design philosophy.
16.1 Link Design Issues

Many of the design issues for link layer design were covered in previous chapters. We will now briefly review these ideas, and also discuss some new design issues that arise due to energy constraints.

16.1.1 Fundamental Capacity Limits

The fundamental capacity of wireless channels was discussed in Chapter 4. This capacity dictates the maximum data rate that can be transmitted over the channel with arbitrarily small probability of error. In Chapter 4 we analyzed the capacity of AWGN channels and fading channels, and the capacity of multiple antenna channels was given in Chapter 10.1.4. Capacity results for fading channels with perfect transmitter and receiver knowledge indicate that the transmitter should increase power and rate in good channel conditions and decrease them in poor channel conditions. The multiple antenna results indicate that the capacity of wireless channels increases linearly with the number of antennas at the transmitter/receiver, however this requires perfect channel estimates. Degradation in these estimates can significantly degrade the capacity gains resulting from multiple antennas. In general the capacity-achieving codes for wireless channels have asymptotically large block lengths. The long codes and complex decoding in this optimal scheme drive the probability of error to zero for any data rate below capacity, but the complexity of these schemes makes them hard to approximate with practical implementations.

Channel capacity under a hard transmit energy constraint, as opposed to a peak or average power constraint, is a relatively new design problem. With finite energy it is not possible to transmit any number of bits with asymptotically small error probability. This is easy to see intuitively by considering the transmission of a single bit. The only way to ensure that two different values in signal space, representing the two possible bit values, can be decoded with arbitrarily small error is to make their separation arbitrarily large, which requires arbitrarily large energy. Since arbitrarily small error probability is not possible under a hard energy constraint, a different notion of reliable communication is needed. Pioneering work by Gallager in this area defines reliable communication under a finite energy constraint in terms of the capacity per unit energy. This capacity per unit energy is defined as the maximum number of bits per unit energy that can be transmitted such that the maximum likelihood random coding error exponent is positive. This definition ensures that for all rates below the capacity per unit energy error probability decreases exponentially with the total energy, although it will not be asymptotically small for finite-energy channels. Gallager also shows that the capacity per unit energy is achieved using an unlimited number of degrees of freedom per transmitted bit. This translates to either very wideband communication or using many symbols per bit, the opposite of high-rate transmission schemes under a power constraint (e.g., MQAM, with M bits/symbol for M large).

Capacity per unit energy is also explored in [26], and these results can be used to obtain the capacity of finite-energy channels in terms of bits [27]. Capacity in bits dictates the maximum number of bits that can be transmitted over a channel using finite energy given some nonzero probability of bit error (recall that this error probability cannot be driven to zero with finite energy). The capacity of a finite-energy channel in bits is an important concept, since it indicates that ad hoc wireless networks with finite energy nodes only have a finite number of bits that a given node can transmit before exhausting its energy. Allocating those bits to the different requirements of the network: information transmission, exchange of routing information, forwarding bits for other nodes, channel estimation, etc., becomes an interesting and challenging optimization problem that clearly requires cross layer design.
16.1.2 Coding

Channel coding can significantly reduce the power required to achieve a given BER and is therefore a common feature in link layer design. Code designs for both AWGN and fading channels were discussed in Chapter 8. Most wireless systems use some form of error control coding to reduce power consumption. Conventional error control codes use block or convolutional code designs: the error correction capability of these codes is obtained at the expense of an increased signal bandwidth or a lower data rate. Trellis codes use a joint design of the channel code and modulation to provide good error correction without any bandwidth or rate penalty. Turbo codes and the more general family of codes on graphs minimize transmit power required for AWGN channels, but the associated processing complexity may compromise these power gains. All of these codes can also be designed for fading channels to limit required energy.

16.1.3 Multiple Antennas

Multiple antennas at the transmitter and/or receiver play a powerful role in improving the performance and reducing the required transmit power for wireless link layer designs, as described in more detail in Chapter 7. Multiple antenna systems typically use either diversity, beamsteering, or multiple input multiple output (MIMO) techniques. Diversity combining is a common technique to mitigate flat fading by coherently combining multiple independently fading copies of the signal. By significantly reducing the impact of flat fading, diversity combining can lead to significant power savings.

Beamsteering creates an effective antenna pattern at the receiver with high gain in the direction of the desired signal and low gain in all other directions. Beamsteering is accomplished by combining arrays of antennas with signal processing in both space and time. The signal processing typically adjusts the phase shifts at each antenna to “steer” the beam in the desired direction. A simpler technique uses sectorized antennas with switching between the sectors. Beamsteering significantly improves energy efficiency since transmitter power is focused in the direction of its intended receiver. Beamsteering also reduces interference power along with fading and intersymbol interference due to multipath, since the interference and multipath signals are highly attenuated when they arrive from directions other than that of the line-of-sight (or dominant) signal. Results indicate that beamsteering can significantly improve the transmission range, data rates, and BER of wireless links. Highly mobile nodes can diminish these gains, as the beamsteering direction will be shifting and difficult to determine accurately.

Multiple input multiple output (MIMO) systems, where both transmitter and receiver use multiple antennas, can significantly increase the data rates possible on a given channel. As we saw in Chapter 7, in MIMO systems, if both the transmitter and the receiver have channel estimates, then with N antennas at the transmitter and receiver the MIMO system can be transformed into N separate channels that do not interfere with each other, providing a roughly N-fold capacity increase over a system with a single antenna at both the transmitter and receiver. When the transmitter does not know the channel then the optimal transmission strategy is a space-time code, where bits are encoded over both space and time. These codes are highly complex, so in practice suboptimal schemes like layered space-time codes are used and tend to perform very well.

While multiple antenna techniques save transmission power, they are often highly complex and therefore require significant power for signal processing. Given a total energy constraint this tradeoff must be examined relative to each system to determine if multiple antenna techniques result in a net savings in energy.
16.1.4 Power control

Power control is a potent mechanism for improving wireless ad-hoc network performance. At the link layer power control can be used to compensate for random channel variations due to multipath fading, reduce the transmit power required to obtain a given data rate and error probability, minimize the probability of link outage, and reduce interference to neighboring nodes. It can also be used to meet hard delay constraints and prevent buffer overflow.

Power control strategies at the link layer typically either maintain SINR on the link above a required threshold by increasing power relative to fading and interference or use a "water-filling" approach where power and rate are increased for good channel conditions, decreased for poor channel conditions, and set to zero when the channel quality falls below a given cutoff threshold, as described in Chapter 9. The constant SINR strategy works well for continuous stream traffic with a delay constraint, where data is typically sent at a fixed rate regardless of channel conditions. However, this power control strategy is not power efficient, since much power must be used to maintain the constant SINR in deep fading conditions. Optimal variation of transmission rate and power maximizes average throughput and channel capacity, but the associated variable-rate transmission and channel-dependent delay may not be acceptable for some applications. Power control has also been used to meet delay constraints for wireless data links. In this approach power for transmission of a packet increases as the packet approaches its delay constraint, thereby increasing the probability of successful transmission [28]. A more complex approach uses dynamic programming to minimize the transmit power required to meet a hard delay constraint [29], and the resulting power consumption is much improved over power control that maintains a constant SINR.

Before closing this section, we want to emphasize that power control has a significant impact on protocols above the link layer. The level of transmitter power defines the “local neighborhood” - the collection of nodes that can be reached in a single hop - and thus in turn defines the context in which access, routing, and other higher layer protocols operate. Power control will therefore play a key role in the development of efficient cross layer networking protocols. We will discuss integration of power control with multiple access and routing protocols in later sections.

16.1.5 Adaptive Resource Allocation

Adaptive resource allocation in link layer design provides robust link performance with high throughput while meeting application-specific constraints. The basic premise is to adapt the link transmission scheme to the underlying channel, interference, and data characteristics through variation of the transmitted power level, symbol transmission rate, constellation size, coding rate/scheme, or any combination of these parameters. Moreover, adaptive modulation can compensate for SINR variations due to interference as well as multipath fading and can be used to meet different QoS requirements of multimedia [30] by prioritizing delay-constrained bits and adjusting transmit power to meet BER requirements.

Recent work in adaptive resource allocation has investigated combinations of power, rate, code, and BER adaptation ([31] and the references therein). These schemes typically assume some finite number of power levels, modulation schemes, and codes, and the optimal combination is chosen based on system conditions and constraints. Only a small number of power levels, rates, and/or codes are needed to achieve near-optimal performance, since there is a critical number of degrees of freedom needed for good performance of adaptive resource allocation, and beyond this critical number additional degrees of freedom provide minimal performance gain [31]. In particular, power control in addition to variable-rate transmission provides negligible capacity increase in fading channels [32], cellular systems [33, 40], and ad hoc wireless networks [34]. CDMA systems, in addition to varying power, data rate, and channel coding, can also adjust their spreading gain or the number of spreading codes assigned to a given user [35, 36].

320
The benefits of assigning multiple spreading codes per user are greatest when some form of multiuser detection is used, since otherwise self-interference is introduced [37]. Note also that in adaptive CDMA systems all transmitters sending to a given receiver must coordinate since they interfere with each other.

Other adaptive techniques include variation of the link layer retransmission strategy as well as its frame size. The frame is the basic information block transmitted over the link and includes overhead in the form of header and error control bits. Shorter frames entail a higher overhead, but are less likely to be corrupted by sporadic interference and require less time for retransmission. Recent results have shown that optimizing frame length can significantly improve throughput as well as energy efficiency [38].

Data communications require corrupted packets to be retransmitted so that all bits are correctly received. Current protocols typically discard the corrupted packet and start over again on the retransmission. However, recent work has shown that diversity combining of retransmitted packets or retransmitting additional redundant code bits instead of the entire packet can substantially increase throughput ([39] and the references therein). A performance comparison of incremental redundancy against that of adaptive modulation is given in [40].

16.2 Medium Access Control Design Issues

The medium access control protocol dictates how different users share the available spectrum. There are two components to this spectrum allocation: how to divide the spectrum into different channels, and then how to assign these different channels to different users. The different methods that can be used to divide the spectrum into different channels include frequency-division, time-division, code-division, and hybrid methods. Details on these techniques are given in Chapter 14. When users have very bursty traffic the most efficient mechanism to assign channels is random access, where users contend for a channel whenever they have data to transmit. This contention is inefficient when users have continuous stream data or long packet bursts. In this case some form of scheduling helps to prevent collisions and ensure continuous connections. The design and tradeoff analysis for different channel assignment strategies was given in Chapter 14.5.

Random access protocols can be more energy efficient by limiting the amount of time that a given node spends transmitting and receiving. The paging industry developed a solution to this problem several decades ago by scheduling “sleep” periods for pagers. The basic idea is that each pager need only listen for transmissions during certain short periods of time. This is a simple solution to implement when a central controller is available. It is less obvious how to implement such strategies within the framework of a distributed control algorithm. Access protocols that utilize node sleep times to minimize energy consumption are investigated in [10].

Random access schemes can be made more flexible in general, and more energy aware in particular, by adopting a dynamic programming approach to decisions about transmissions. Under dynamic programming, decision making is based on utility (cost) functions - an agent will act or not, Depending on utility of the action as indicated by a utility function computed over some time period. A given protocol can be made energy aware by introducing the cost of a transmission into the utility function. Consider the case of ALOHA. In work conducted by MacKenzie at Cornell, a game-theoretic version of ALOHA was developed that initially focused on a simple “collision game” [41]. In this model the delay and energy cost of transmission are parameters of the cost function associated with transmission. The resulting system is both stable (in the language of game theory, there is a Nash Equilibrium) and distributed. It allows for individual nodes to make autonomous decisions on retransmission strategies. This simple version of the game assumes that the users know the number of backlogged users within the local neighborhood, but it is possible to develop utility functions that reflect less ideal situations. In general, the decision-theoretic
approach provides a convenient way to embed the cost of transmission decisions into random access protocols. Random access protocols work well with bursty traffic where there are many more users than available channels, yet these users rarely transmit. If users have long strings of packets or continuous stream data, then random access works poorly as most transmissions result in collisions. Thus channels must be assigned to users in a more systematic fashion by transmission scheduling, described in more detail in Chapter 14.6. Scheduling still requires some mechanism at startup to establish the schedule.

Scheduling under an energy constraint further complicates the problem. Channel capacity under a finite energy constraint is maximized by transmitting each bit over a very long period of time. However, when multiple users wish to access the channel, the transmission time allocated to each user must be limited. Recent work has investigated optimal scheduling algorithms to minimize transmit energy for multiple users sharing a channel [42]. In this work scheduling was optimized to minimize the transmission energy required by each user subject to a deadline or delay constraint. The energy minimization was based on judiciously varying packet transmission time (and corresponding energy consumption) to meet the delay constraints of the data. This scheme was shown to be significantly more energy efficient than a deterministic schedule with the same deadline constraint.

Power control improves the efficiency of random access and can often be done in a distributed fashion, as described in Chapter 14.7. Specifically, distributed power control algorithms exist that insure all users meet their threshold SINR levels as long as these SINRs are feasible. These algorithms can also modified to prevent user access when this user cannot be accommodated without compromising the target SINRs of existing users. Power control for multiple access can also help users meet delay constraints in a random access environment. Power control has been extensively studied for cellular systems ([43] and the references therein). However, there are few results outside of [8] on the design and performance of power control schemes in ad hoc wireless networks, and this remains an active area of research.

16.3 Network Design Issues

16.3.1 Neighbor Discovery and Network Connectivity

“Neighbor discovery” is one of the first steps in the initialization of a network of randomly distributes nodes. From the perspective of the individual node, this is the process of determining the number and identity of network nodes with which direct communication can be established given some maximum power level and minimum link performance requirements (typically in terms of data rate and associated BER). Clearly the higher the allowed transmit power, the greater the number of nodes in a given neighborhood.

Neighbor discovery begins with a probe of neighboring nodes using an initial power constraint. If the number of nodes thus contacted is insufficient to ensure some minimal connectivity requirements then the power constraint is relaxed and probing repeated. The minimal connectivity requirements will depend on the application, but most ad hoc wireless network applications assume a fully-connected network whereby each node can reach every other node, often through multiple hops. The exact number of neighbors that each node requires to obtain a fully-connected network depends on the exact network configuration but is generally on the order of six to eight for randomly distributed immobile nodes [3, 8]. An analysis of the minimum transmit power required at each node to maintain full connectivity is done in [59]. Clearly the ability of the network to stay connected will decrease with node mobility, and so maintaining full connectivity under high mobility will require larger neighborhoods and an associated increase in transmit power at each node. It is interesting to note that, given a random distribution of nodes, the likelihood of complete connectivity changes abruptly from zero to one as the transmission range of each node is increased [44]. Moreover, the transmission range required for the network to be fully connected increases as the node density decreases, reflecting the increased probability of deep holes, to borrow a term from
the theory of lattices. Connectivity is also heavily influenced by the ability to adapt various parameters at the link layer such as rate, power, and coding, since communication is possible even on links with low SINR if these parameters are adapted [15].

From the standpoint of power efficiency and operational lifetime, it is also very important that nodes be able to decide whether or not to take a nap. These sleep decisions must take into account network connectivity, so it follows that these decisions are local, but not autonomous. Mechanisms that support such decisions can be based on neighbor discovery coupled with some means for ordering decisions within the neighborhood. In a given area, the opportunity to sleep should be circulated among the nodes, ensuring that connectivity is not lost through the coincidence of several, identical decisions to go to sleep.

16.4 Routing

The multihop routing protocol in an ad hoc wireless network is a significant design challenge, especially under energy constraints where the exchange of routing data consumes precious energy resources. Most work in multihop routing protocols falls into three main categories: flooding, proactive routing (centralized or distributed), and reactive routing ([45, 46, 47] and the references therein).

In flooding a packet is broadcast to all nodes within receiving range. These nodes also broadcast the packet, and the forwarding continues until the packet reaches its ultimate destination. Flooding has the advantage that it is highly robust to changing network topologies and requires little routing overhead. In fact, in highly mobile networks flooding may be the only feasible routing strategy. The obvious disadvantage is that multiple copies of the same packet traverse through the network, wasting bandwidth and battery power of the transmitting nodes. This disadvantage makes flooding impractical for all but the smallest of networks.

The opposite philosophy to flooding is centralized route computation. In this approach information about channel conditions and network topology are determined by each node and forwarded to a centralized location that computes the routing tables for all nodes in the network. The criterion used to compute the "optimal" route depends on the optimization criterion: common criteria include minimum average delay, minimum number of hops, and recently, minimum network congestion. While centralized route computation provides the most efficient routing according to the optimality condition, it cannot adapt to fast changes in the channel conditions or network topology, and also requires much overhead for collecting local node information and then disseminating the routing information. Centralized route computation, like flooding, it typically only used in very small networks.

Distributed route computation is the most common routing procedure used in ad hoc wireless networks. In this protocol nodes send their connectivity information to neighboring nodes and then routes are computed from this local information. In particular, nodes determine the next hop in the route of a packet based on this local information. There are several advantages of distributed route computation. First, the overhead of exchanging routing information with local nodes is minimal. In addition, this strategy adapts quickly to link and connectivity changes. The disadvantages of this strategy are that global routes based on local information are typically suboptimal, and routing loops are often common in the distributed route computation.

Both centralized and distributed routing require fixed routing tables that must be updated at regular intervals. An alternate approach is reactive (on-demand) routing, where routes are created only at the initiation of a source node that has traffic to send to a given destination. This eliminates the overhead of maintaining routing tables for routes not currently in use. In this strategy a source node initiates a route-discovery process when it has data to send. This process will determine if one or more routes are available to the destination. The route or routes are maintained until the source has no more data for that
particular destination. The advantage of reactive routing is that globally-efficient routes can be obtained with relatively little overhead, since these routes need not be maintained at all times. The disadvantage is that reactive routing can entail significant delay, since the route discovery process is initiated when there is data to send, but this data cannot be transmitted until the route discovery process has concluded. Recently a combination of reactive and proactive routing has been proposed to reduce the delay associated with reactive routing as well as the overhead associated with proactive routing [46].

Mobility has a huge impact on routing protocols as it can cause established routes to no longer exist. High mobility especially degrades the performance of proactive routing, since routing tables quickly become outdated, requiring an enormous amount of overhead to keep them up to date. Flooding is effective in maintaining routes under high mobility, but has a huge price in terms of network efficiency. A modification of flooding called multipath routing has been recently proposed, whereby a packet is duplicated on only a few paths with a high likelihood of reaching its final destination [47]. This technique has been shown to perform well under dynamically changing topologies.

Energy constraints in the routing protocol significantly change the problem. First of all, the exchange of routing information between nodes entails an energy cost: this cost must be traded against the energy savings that result from using this information to make routes more efficient. In addition, even with perfect information about the links and network topology, the route computation must change to take energy constraints into account. Specifically, a route utilizing a small number of hops (low delay) may use significantly more energy (per node and/or total energy) than a route consisting of a larger number of hops. Moreover, if one node is often used for forwarding packets the battery of that node will die out quickly, making that node unavailable for transmitting its own data or forwarding packets for others. Thus the routing protocol under energy constraints must somehow balance delay constraints, battery lifetime, and routing efficiency.

There has been much recent work on evaluating routing protocols under energy constraints. In [48] simulations were used to compare the energy consumption of different well-known routing protocols. Their results indicate that reactive routing is more energy-efficient. This is not surprising since proactive routing must maintain routing tables via continuous exchange of routing information, which entails a significant energy cost. This work was extended in [49] to more accurately model the energy consumption of radios in a "listening" mode. The energy consumption for this mode, ignored in [48], was significant and based on this more accurate model it was concluded that the proactive and reactive routing schemes analyzed in [48] have roughly the same energy consumption. The paper goes on to propose a sleep mode for nodes that reduces energy consumption by up to 40% and adaptive coding to minimize the energy cost of routes. Power control to optimize energy-efficiency in routing is also studied in [50].

16.4.1 Scalability and Distributed Protocols

Scalability arises naturally in the design of self-configuring ad hoc wireless networks. The key to self-configuration lies in the use of distributed network control algorithms: algorithms that adjust local performance to account for local conditions. To the extent that these algorithms forgo the use of centralized information and control resources, the resulting network will be scalable. Work on scalability in ad hoc wireless networks has mainly focused on self-organization [10, 51], distributed routing [52], mobility management [4], QoS support, and security [54]. Note that distributed protocols often consume a fair amount of energy in local processing and message exchange; this is analyzed in detail for security protocols in [55]. Thus interesting tradeoffs arise as to how much local processing should be done versus transmitting information to a centralized location for processing. Most work on scalability in ad hoc wireless networks has focused on relatively small networks, less than 100 nodes. Many ad-hoc network applications, especially sensor networks, could have hundreds to thousands of nodes or even more. The
ability of existing network protocols to scale to such large network sizes remains an open question.

16.4.2 Network Capacity

The fundamental capacity limit of an ad hoc wireless network - the set of maximum data rates possible between all nodes - is a highly challenging problem in information theory. In fact, the capacity for simple channel configurations within an ad hoc wireless network such as the general relay and interference channel remain unsolved [56]. In a recent landmark paper an upper bound on the performance of an asymptotically large ad hoc wireless network in terms of the uniformly achievable maximum data rate was determined [57]. Surprisingly this result indicates that even with optimal routing and scheduling, the per-node rate in a large ad hoc wireless network goes to zero. To a large extent this pessimistic result indicates that in a large network all nodes should not communicate with all other nodes: there should be distributed processing of information within local neighborhoods. This work was extended in [58] to show that node mobility actually increases the per-node rate to a constant, i.e. mobility increases network capacity. This result follows from the fact that mobility introduces variation in the network that can be exploited to improve per-user rates. Other recent work in this area has determined achievable rate regions for ad hoc wireless networks using adaptive transmission strategies [34] and an information theoretic analysis on achievable rates between nodes [59].

16.5 Application Design Issues

In true cross layer protocol design, the highest layer - the application - can play a significant role in network efficiency. In this section we consider network adaptation to the application requirements and application adaptation to the underlying network capabilities.

16.5.1 Adaptive QoS

The Internet today, even with high-speed high-quality fixed communication links, is unable to deliver guaranteed QoS to the application in terms of guaranteed end-to-end rates or delays. For ad hoc wireless networks, with low-capacity error-prone time-varying links, mobile users, and a dynamic topology, the notion of being able to guarantee these forms of QoS is simply unrealistic. Therefore, ad hoc wireless network applications must adapt to time-varying QoS parameters offered by the network. While adaptivity at the link and network level as described in previous sections will provide the best possible QoS to the application, this QoS will vary with time as channel conditions, network topology, and user demands change. Applications must therefore adapt to the QoS that is offered. There can also be a negotiation for QoS such that users with a higher priority can obtain a better QoS by lowering the QoS of less important users.

As a simple example, the network may offer the application a rate-delay tradeoff curve which is derived from the capabilities of the lower layer protocols [25]. The application layer must then decide at which point on this curve to operate. Some applications may be able to tolerate a higher delay but not a lower overall rate. Examples include data applications in which the overall data rate must be high but latency might be tolerable. Other applications might be extremely sensitive to delay (e.g., a distributed-control application) but might be able to tolerate a lower rate (e.g., via a coarser quantization of sensor data). Energy constraints introduce another set of tradeoffs related to network performance versus longevity. Thus, these tradeoff curves will typically be multidimensional to incorporate rate, delay, bit-error-rate, longevity, etc. These tradeoff curves will also change with time as the number of users on the network and the network environment change.
16.5.2 Application Adaptation and Cross Layer Design Revisited

In addition to adaptive QoS, the application itself can adapt to the QoS offered. For example, for applications like video with a hard delay constraint, the video compression algorithm might change its compression rate such that the source rate adjusts to the rate the network can deliver under the delay constraint. Thus, under poor network conditions compression would be higher (lower transmission rate) and the end quality would be poorer. There has been much recent work on application adaptation for wireless networks ([60, 61, 53] and the references therein). This work indicates that even demanding applications like video can deliver good overall performance under poor network conditions if the application is given the flexibility to adapt.

The concept of application adaptation returns us to the cross layer design issue discussed earlier. While the application can adapt to a rate-delay-performance tradeoff curve offered by the network and underlying links, by making the lower layer protocols aware of the tradeoffs inherent to the application adaptation, that tradeoff curve might be adjusted to improve end-to-end performance without using up more resources in the network. In other words, if the application is aware of the lower layer protocol tradeoffs and these protocols aware of the application tradeoffs, these tradeoffs curves can be merged to operate at the best point relative to end-to-end performance. While implementing this philosophy remains a wide open research problem, it holds significant promise for the performance of ad hoc wireless networks.
Bibliography

327

328

