Adaptive Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Convergence Rate</th>
<th>Computational Requirements</th>
<th>Numerical Properties</th>
<th>Implementation Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMS</td>
<td>3</td>
<td>N</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RLS (Direct-Form)</td>
<td>1</td>
<td>$2N^{**2}+4.5N$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fast RLS (Direct-form)</td>
<td>1</td>
<td>$7N+14$</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Gradient (Lattice-Ladder)</td>
<td>2</td>
<td>$13N-8$</td>
<td>2</td>
<td>1 (VLSI)</td>
</tr>
<tr>
<td>RLS (Lattice-Ladder)</td>
<td>1</td>
<td>$15N-11$</td>
<td>1</td>
<td>1 (VLSI)</td>
</tr>
<tr>
<td>RLS (Square-Root)</td>
<td>1</td>
<td>$1.5N^{**2}+6.5N$</td>
<td>2</td>
<td>1 (VLSI)</td>
</tr>
</tbody>
</table>
Blind Equalizers

\[CF_{RCA} = E[| \hat{E}_{T,n} |^2] = E[| Y_n - R_R \cdot \text{csign}(Y_n) |^2] \]

\[CF_{CMA} = E[| Y_n |^2 - R_R^2] \]

\[CF_{MMA} = E[(y_n^2 - R_M)^2 + (\hat{y}_n^2 - R_M^2)^2] \]
Blind Equalizers

MMA

GMMA
Convergence to Wrong Solutions

(a) 16-point constellation (b) 32-point constellation

RCA/MMA

CMA
MLSE Equalizer

- Estimating the state of finite-state machine
 - Discrete-time channel - Coefficients: \(\{f_k\} \)
 - ISI spans over \(L+1 \) symbols (\(L \) interfering comp.)
 - The state at time \(k \):
 \[
 S_k = (a_{k-1}, a_{k-2}, \ldots, a_{k-L})
 \]
 - VA will have \(M^L \) states in the trellis, \(M^{L+1} \) sequences

\[
PM_1(\bar{a}_{L+1}) \equiv PM_1(a_{L+1}, a_L, \ldots, a_2) = \max_{a_1} \sum_{k=1}^{L+1} \ln p(u_k | a_k, a_{k-1}, \ldots, a_{k-L})
\]

\[
PM_k(\bar{a}_{L+k}) = \max_{a_k} \left[\ln p(u_{L+k} | a_{L+k}, \ldots, a_k) + PM_{k-1}(\bar{a}_{L+k-1}) \right]
\]